Home
Class 12
MATHS
If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)...

If `f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3))),0lexle3,` then range of `f(x)` is

A

`[0,(pi)/2)`

B

`[0,(pi)/4]`

C

`[(pi)/6,(pi)/3]`

D

`[0,(pi)/3]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \tan^{-1}\left(\frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}\right) + \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) \) for \( 0 \leq x \leq 3 \), we can follow these steps: ### Step 1: Simplify the function First, we can rewrite the first term of \( f(x) \): \[ f(x) = \tan^{-1}\left(\frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}\right) + \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) \] ### Step 2: Use the formula for the sum of arctangents We can apply the formula for the sum of arctangents: \[ \tan^{-1}(A) + \tan^{-1}(B) = \tan^{-1}\left(\frac{A + B}{1 - AB}\right) \] where \( A = \frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2} \) and \( B = \frac{x}{\sqrt{3}} \). ### Step 3: Find \( A + B \) and \( 1 - AB \) Calculating \( A + B \): \[ A + B = \frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2} + \frac{x}{\sqrt{3}} \] To combine these fractions, we need a common denominator: \[ A + B = \frac{(\sqrt{3}x - 3x)\sqrt{3} + x(3\sqrt{3} + x^2)}{(3\sqrt{3} + x^2)\sqrt{3}} \] Calculating \( 1 - AB \): \[ AB = \left(\frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}\right) \cdot \left(\frac{x}{\sqrt{3}}\right) \] ### Step 4: Substitute back into the arctangent formula Now we can substitute \( A + B \) and \( 1 - AB \) back into the arctangent formula. ### Step 5: Analyze the function Since \( \tan^{-1}(x) \) is an increasing function, we can find the minimum and maximum values of \( f(x) \) by evaluating it at the endpoints of the interval \( [0, 3] \). ### Step 6: Calculate \( f(0) \) and \( f(3) \) 1. **At \( x = 0 \)**: \[ f(0) = \tan^{-1}(0) + \tan^{-1}(0) = 0 \] 2. **At \( x = 3 \)**: \[ f(3) = \tan^{-1}\left(\frac{\sqrt{3}(3) - 3(3)}{3\sqrt{3} + 3^2}\right) + \tan^{-1}\left(\frac{3}{\sqrt{3}}\right) \] Simplifying the first term: \[ f(3) = \tan^{-1}\left(\frac{3\sqrt{3} - 9}{3\sqrt{3} + 9}\right) + \tan^{-1}(\sqrt{3}) \] The first term simplifies to \( \tan^{-1}(0) = 0 \) and the second term is \( \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \). ### Step 7: Determine the range Thus, the function \( f(x) \) ranges from \( 0 \) to \( \frac{\pi}{4} \). ### Final Answer The range of \( f(x) \) is: \[ \text{Range of } f(x) = [0, \frac{\pi}{4}] \]

To find the range of the function \( f(x) = \tan^{-1}\left(\frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}\right) + \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) \) for \( 0 \leq x \leq 3 \), we can follow these steps: ### Step 1: Simplify the function First, we can rewrite the first term of \( f(x) \): \[ f(x) = \tan^{-1}\left(\frac{\sqrt{3}x - 3x}{3\sqrt{3} + x^2}\right) + \tan^{-1}\left(\frac{x}{\sqrt{3}}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]=

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

int(x+3sqrt(x^(2))+6sqrt(x))/(x(1+3sqrt(x)))dx

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

If int(f(x))/(x^(3)-1)dx=log|(x^(2)+x+1)/(x-1)|+(A)/(948sqrt(3))(tan^(-1)"(2x+1)/(sqrt(3)))+C , where f(x) is a polynomial of second degree in x such that f(0)=f(1)=3f(2)=3 , then A equals……..

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if x >1/(sqrt(3))

If f(x)=cos^(- 1)x+cos^(- 1){x/2+1/2sqrt(3-3x^2)} then

f(x)=sqrt(log((3x-x^(2))/(x-1)))

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If sin^(-1)x + cot^(-1)(1/2)=(pi)/2 then x is equal to

    Text Solution

    |

  2. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  3. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  4. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  5. If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal t...

    Text Solution

    |

  6. For real numbers x and y , define x\ R\ y iff x-y+sqrt(2) is an irrati...

    Text Solution

    |

  7. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |

  8. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |

  9. The domain of the function f(x)=log(1//2)(-log(2)(1+1/(root(4)(x)))-1)...

    Text Solution

    |

  10. If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p ...

    Text Solution

    |

  11. Let f(x)=(x-[x])/(1+x-[x]),RtoA is onto then find set A. (where {.} an...

    Text Solution

    |

  12. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  13. Range of the function f(x)=log (sqrt2)(2-log(2)(16 sin ^(2)x +1)) is:

    Text Solution

    |

  14. Which of the following pair of functions are identical ?

    Text Solution

    |

  15. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  16. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  17. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  18. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  19. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  20. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |