Home
Class 12
MATHS
Statement 1: If agt0,bgt0, tan^(-1)(a/x)...

Statement 1: If `agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implies x=sqrt(ab)`
Statement 2: If `m,n epsilonN,ngem,` then `"tan"^(-1)(m/n)+tan^(-1)(n-m)/(n+m)=(pi)/4`.

A

a.Statement -1 is true, Statement -2 is true and Statement -2 is correct explanation for Statement -1

B

b.Statement -1 is true, Statement -2 is true and Statement -2 is not correct explanation for Statement -1

C

c.Statement -1 is true, Statement -2 is false

D

d.Statement -1 is false Statement -2 is true

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze both statements separately and determine their validity. ### Statement 1: If \( a > 0, b > 0 \), then \( \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) = \frac{\pi}{2} \) implies \( x = \sqrt{ab} \). #### Step 1: Use the identity for the sum of arctangents. We know that: \[ \tan^{-1}(u) + \tan^{-1}(v) = \tan^{-1}\left(\frac{u + v}{1 - uv}\right) \] if \( uv < 1 \). Let \( u = \frac{a}{x} \) and \( v = \frac{b}{x} \). Then, we have: \[ \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) = \tan^{-1}\left(\frac{\frac{a}{x} + \frac{b}{x}}{1 - \frac{ab}{x^2}}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{a + b}{x}\cdot\frac{x^2}{x^2 - ab}\right) \] #### Step 2: Set the equation equal to \(\frac{\pi}{2}\). Since we have: \[ \tan^{-1}\left(\frac{a + b}{x}\cdot\frac{x^2}{x^2 - ab}\right) = \frac{\pi}{2} \] This implies that the argument must tend to infinity: \[ \frac{a + b}{x}\cdot\frac{x^2}{x^2 - ab} \to \infty \] #### Step 3: Determine when the argument tends to infinity. The fraction tends to infinity when the denominator approaches zero: \[ x^2 - ab = 0 \implies x^2 = ab \implies x = \sqrt{ab} \] Thus, Statement 1 is true. ### Statement 2: If \( m, n \in \mathbb{N}, n \geq m \), then: \[ \tan^{-1}\left(\frac{m}{n}\right) + \tan^{-1}\left(\frac{n - m}{n + m}\right) = \frac{\pi}{4} \] #### Step 1: Use the identity for the sum of arctangents again. Let \( u = \frac{m}{n} \) and \( v = \frac{n - m}{n + m} \). Then: \[ \tan^{-1}(u) + \tan^{-1}(v) = \tan^{-1}\left(\frac{u + v}{1 - uv}\right) \] #### Step 2: Calculate \( u + v \) and \( 1 - uv \). Calculating \( u + v \): \[ u + v = \frac{m}{n} + \frac{n - m}{n + m} = \frac{m(n + m) + (n - m)n}{n(n + m)} = \frac{mn + m^2 + n^2 - mn}{n(n + m)} = \frac{m^2 + n^2}{n(n + m)} \] Calculating \( uv \): \[ uv = \frac{m}{n} \cdot \frac{n - m}{n + m} = \frac{m(n - m)}{n(n + m)} \] #### Step 3: Set up the equation. Now, we need to check if: \[ \tan^{-1}\left(\frac{m^2 + n^2}{n(n + m) - \frac{m(n - m)}{n + m}}\right) = \frac{\pi}{4} \] This implies that the argument must equal 1: \[ \frac{m^2 + n^2}{n(n + m) - \frac{m(n - m)}{n + m}} = 1 \] #### Step 4: Verify the equality. After simplification, we find that this holds true under the given conditions. Thus, Statement 2 is also true. ### Conclusion: Both statements are true, but Statement 2 does not serve as a correct explanation for Statement 1. Therefore, the answer to the question is that both statements are true, but Statement 2 is not a correct explanation of Statement 1.

To solve the given problem, we need to analyze both statements separately and determine their validity. ### Statement 1: If \( a > 0, b > 0 \), then \( \tan^{-1}\left(\frac{a}{x}\right) + \tan^{-1}\left(\frac{b}{x}\right) = \frac{\pi}{2} \) implies \( x = \sqrt{ab} \). #### Step 1: Use the identity for the sum of arctangents. We know that: \[ ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=pi/4

Prove that: tan^(-1)(m/n)+tan^(-1)((n-m)/(n+m))=[pi/4; m^(2)/n^(2) > -1

tan^-1 (x-1)/(x-2) + tan^-1 (x+1)/(x+2)=pi/4. find X

Statement 1: tan^(-1)((3)/(4))+tan^(-1)((1)/(7))=(pi)/(4) Statement 2: For x gt 0, Y gt 0 tan^(-1)((x)/(y))+tan^(-1)((y-x)/(y+x))=(pi)/(4)

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0, -pi/2 if x<0

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. The numerical value of "tan"(2tan^(-1)(1/5)-pi/4 is equal to

    Text Solution

    |

  2. If f(x)=tan^(-1)((sqrt(3)x-3x)/(3sqrt(3)+x^(2)))+tan^(-1)(x/(sqrt(3)))...

    Text Solution

    |

  3. Statement 1: If agt0,bgt0, tan^(-1)(a/x)+tan^(-1)(b/x)=(pi)/2 . implie...

    Text Solution

    |

  4. If cos^(-1)x-cos^(-1)y/2=alpha,t h e n4x^2-4x ycosalpha+y^2 is equal t...

    Text Solution

    |

  5. For real numbers x and y , define x\ R\ y iff x-y+sqrt(2) is an irrati...

    Text Solution

    |

  6. Let A=Z, the set of integers. Let R(1)={(m,n)epsilonZxxZ:(m+4n) is div...

    Text Solution

    |

  7. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |

  8. The domain of the function f(x)=log(1//2)(-log(2)(1+1/(root(4)(x)))-1)...

    Text Solution

    |

  9. If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p ...

    Text Solution

    |

  10. Let f(x)=(x-[x])/(1+x-[x]),RtoA is onto then find set A. (where {.} an...

    Text Solution

    |

  11. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  12. Range of the function f(x)=log (sqrt2)(2-log(2)(16 sin ^(2)x +1)) is:

    Text Solution

    |

  13. Which of the following pair of functions are identical ?

    Text Solution

    |

  14. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  15. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  16. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  17. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  18. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  19. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  20. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |