Home
Class 12
MATHS
If q^2 - 4pr =0 , p gt 0 then the domain...

If `q^2 - 4pr =0 , p gt 0` then the domain of the function `f(x) = log(p x^3 +(p+q)x^2 +(q+r) x + r)` is (a) `R-{-q/2p}` (b) `R-[(-oo,-1]uu{-q/(2p)}]` (c) `R-[(-oo,-1)nn{-1/(2p)}]` (d) `R`

A

`R-{-q/(2p)}`

B

`R-[(-oo,-1]uu{-1/(2p)}]`

C

`R-[(-oo,-1)nn{-1/(2p)}]`

D

`R`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \log(px^3 + (p+q)x^2 + (q+r)x + r) \) given that \( q^2 - 4pr = 0 \) and \( p > 0 \), we need to ensure that the argument of the logarithm is positive. ### Step-by-Step Solution: 1. **Identify the Expression Inside the Logarithm**: The function is given as: \[ f(x) = \log(px^3 + (p+q)x^2 + (q+r)x + r) \] We need to find when the expression \( px^3 + (p+q)x^2 + (q+r)x + r > 0 \). 2. **Finding a Root**: We will check if there are any roots of the polynomial. By substituting \( x = -1 \): \[ p(-1)^3 + (p+q)(-1)^2 + (q+r)(-1) + r = -p + (p+q) - (q+r) + r \] Simplifying this gives: \[ -p + p + q - q - r + r = 0 \] Thus, \( x = -1 \) is a root. 3. **Factoring the Polynomial**: Since \( x = -1 \) is a root, we can factor the polynomial as: \[ px^3 + (p+q)x^2 + (q+r)x + r = (x + 1)(px^2 + (p + q - p)x + (q + r - r)) \] Simplifying gives: \[ = (x + 1)(px^2 + qx + r) \] 4. **Finding the Roots of the Quadratic**: The quadratic \( px^2 + qx + r \) can be solved using the quadratic formula: \[ x = \frac{-q \pm \sqrt{q^2 - 4pr}}{2p} \] Given \( q^2 - 4pr = 0 \), the roots simplify to: \[ x = \frac{-q}{2p} \] This means \( px^2 + qx + r \) has a double root at \( x = \frac{-q}{2p} \). 5. **Analyzing the Sign of the Quadratic**: Since \( p > 0 \), the quadratic \( px^2 + qx + r \) opens upwards. Therefore, it is positive for all \( x \) except at its double root \( x = \frac{-q}{2p} \). 6. **Combining Conditions**: The function \( f(x) \) is defined when: - \( x + 1 > 0 \) which gives \( x > -1 \) - \( px^2 + qx + r > 0 \) which is true for all \( x \) except \( x = \frac{-q}{2p} \). 7. **Final Domain**: Thus, the domain of \( f(x) \) is: \[ x \in \mathbb{R} \setminus \left\{ -1, \frac{-q}{2p} \right\} \] This can be expressed as: \[ (-\infty, -1) \cup (-1, \frac{-q}{2p}) \cup (\frac{-q}{2p}, \infty) \] ### Conclusion: The correct answer is: (b) \( \mathbb{R} - [(-\infty, -1] \cup \{-\frac{q}{2p}\}] \)

To find the domain of the function \( f(x) = \log(px^3 + (p+q)x^2 + (q+r)x + r) \) given that \( q^2 - 4pr = 0 \) and \( p > 0 \), we need to ensure that the argument of the logarithm is positive. ### Step-by-Step Solution: 1. **Identify the Expression Inside the Logarithm**: The function is given as: \[ f(x) = \log(px^3 + (p+q)x^2 + (q+r)x + r) ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

For p, q in R , the roots of (p^(2) + 2)x^(2) + 2x(p +q) - 2 = 0 are

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

Given that q^2-p r ,0,\ p >0, then the value of |p q p x+q y q r q x+r y p x+q y q x+r y0| is- a. zero b. positive c. negative \ d. q^2+p r

Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,2beta be the roots of the equation x^(2)-qx+r=0 , then the value of r is (1) (2)/(9)(p-q)(2q-p) (2) (2)/(9)(q-p)(2p-q) (3) (2)/(9)(q-2p)(2q-p) (4) (2)/(9)(2p-q)(2q-p)

Find the value of : 2p + 3q + 4r + por when p =-1,q = 2 and r = 3

If r^[th] and (r+1)^[th] term in the expansion of (p+q)^n are equal, then [(n+1)q]/[r(p+q)] is (a) 1/2 (b) 1/4 (c) 1 (d) 0

If p > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-q)/(1+p q))+tan^(-1)((q-r)/(1+q r))+tan^(-1)((r-p)/(1+r p)) .

The value of p and q(p!=0,q!=0) for which p ,q are the roots of the equation x^2+p x+q=0 are (a) p=1,q=-2 (b) p=-1,q=-2 (c) p=-1,q=2 (d) p=1,q=2

If p, q, r are rational then show that x^(2)-2px+p^(2)-q^(2)+2qr-r^(2)=0

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Let X be the set of all persons living in a city. Persons x, y in X ar...

    Text Solution

    |

  2. The domain of the function f(x)=log(1//2)(-log(2)(1+1/(root(4)(x)))-1)...

    Text Solution

    |

  3. If q^2 - 4pr =0 , p gt 0 then the domain of the function f(x) = log(p ...

    Text Solution

    |

  4. Let f(x)=(x-[x])/(1+x-[x]),RtoA is onto then find set A. (where {.} an...

    Text Solution

    |

  5. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  6. Range of the function f(x)=log (sqrt2)(2-log(2)(16 sin ^(2)x +1)) is:

    Text Solution

    |

  7. Which of the following pair of functions are identical ?

    Text Solution

    |

  8. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  9. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  10. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  11. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  12. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  13. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  14. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  15. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  16. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  17. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  18. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  19. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  20. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |