Home
Class 12
MATHS
Which of the following pair of functions...

Which of the following pair of functions are identical ?

A

`sqrt(1sinx),"sin"x/2+"cos"x/2`

B

`x,(x^(2))/x`

C

`sqrt(x^(2)),(sqrt(x))^(2)`

D

`lnx^(3)+lnx^(2),5lnx`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which pairs of functions are identical, we need to check if they have the same domain and range. Let's analyze each option step by step. ### Step 1: Analyze Option 1 **Functions:** \( f_1(x) = \sqrt{\sin x} \) and \( f_2(x) = \sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) \) - **Domain of \( f_1(x) = \sqrt{\sin x} \)**: - For the square root to be defined, \( \sin x \) must be greater than or equal to 0. - This occurs when \( x \) is in the intervals \( [2n\pi, (2n+1)\pi] \) for integers \( n \). - **Domain of \( f_2(x) = \sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) \)**: - This function is defined for all real values of \( x \). - **Conclusion for Option 1**: The domains are not the same, hence these functions are not identical. ### Step 2: Analyze Option 2 **Functions:** \( f_1(x) = x \) and \( f_2(x) = \frac{x^2}{x} \) - **Domain of \( f_1(x) = x \)**: - This function is defined for all real values of \( x \). - **Domain of \( f_2(x) = \frac{x^2}{x} \)**: - This function is defined for all real values of \( x \) except \( x = 0 \) (since division by zero is undefined). - **Conclusion for Option 2**: The domains are not the same (as \( f_2 \) is undefined at \( x = 0 \)), hence these functions are not identical. ### Step 3: Analyze Option 3 **Functions:** \( f_1(x) = \sqrt{x^2} \) and \( f_2(x) = \sqrt{x^2} \) - **Domain of \( f_1(x) = \sqrt{x^2} \)**: - This function is defined for all real values of \( x \). - **Domain of \( f_2(x) = \sqrt{x^2} \)**: - This function is also defined for all real values of \( x \). - **Conclusion for Option 3**: The domains are the same. ### Step 4: Analyze Option 4 **Functions:** \( f_1(x) = \ln(x^3) + \ln(x^2) \) and \( f_2(x) = \ln(x^5) \) - **Domain of \( f_1(x) = \ln(x^3) + \ln(x^2) \)**: - This function is defined for \( x > 0 \). - **Domain of \( f_2(x) = \ln(x^5) \)**: - This function is also defined for \( x > 0 \). - **Range**: Both functions yield the same range as they are logarithmic functions. - **Conclusion for Option 4**: The domains and ranges are the same, hence these functions are identical. ### Final Conclusion The only pair of functions that are identical is from Option 4.

To determine which pairs of functions are identical, we need to check if they have the same domain and range. Let's analyze each option step by step. ### Step 1: Analyze Option 1 **Functions:** \( f_1(x) = \sqrt{\sin x} \) and \( f_2(x) = \sin\left(\frac{x}{2}\right) + \cos\left(\frac{x}{2}\right) \) - **Domain of \( f_1(x) = \sqrt{\sin x} \)**: - For the square root to be defined, \( \sin x \) must be greater than or equal to 0. - This occurs when \( x \) is in the intervals \( [2n\pi, (2n+1)\pi] \) for integers \( n \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Which of the following pairs of function are identical?

Which of the following pairs of function are identical?

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b) f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c) f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d) f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)

Which of the following pairs of functions is NOT identical? (a) e^((lnx)/2) and sqrt(x) (b) tan(tanx) and cot(cotx) (c) cos^(2)x+sin^(4)x and sin^(2)x+cos^(4)x (d) (|x|)/x and sgn(x) where sgn(x) stands for signum function.

Which pair of functions is identical?

Which of the following pair of species have identical shape?

Check whether following pairs of function are identical or not? f(x)=tanx and g(x)=1/(cotx)

Check whether following pairs of function are identical or not? f(x)=sqrt(x^(2)) and g(x)=(sqrt(x))^(2)

Check whether following pairs of function are identical or not? f(x)=x and g(x)=e^(lnx)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. The range of the function f(x)=(e^x-e^(|x|))/(e^x+e^(|x|)) is

    Text Solution

    |

  2. Range of the function f(x)=log (sqrt2)(2-log(2)(16 sin ^(2)x +1)) is:

    Text Solution

    |

  3. Which of the following pair of functions are identical ?

    Text Solution

    |

  4. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  5. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  6. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  7. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  8. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  9. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  10. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  11. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  12. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  13. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  14. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  15. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  16. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  17. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  18. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  19. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  20. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |