Home
Class 12
MATHS
If domain of f(x) is(-oo,0), then domain...

If domain of `f(x)` is`(-oo,0)`, then domain of `f(6{x}^2-5(x)+ 1)` is (where {.} represents fractional part function)

A

`bigcup_(n epsilonI)[n+1/3,n+1/2]`

B

`(-oo,0)`

C

`bigcup_(n epsilonI)[n+1/6,n+1]`

D

`bigcup_(n epsilonI)[n-1/2,n-1/2]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(6\{x\}^2 - 5\{x\} + 1) \), where \( \{x\} \) represents the fractional part of \( x \), we start with the given domain of \( f(x) \), which is \( (-\infty, 0] \). ### Step 1: Understand the fractional part function The fractional part function \( \{x\} \) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] This means \( \{x\} \) always lies in the interval \( [0, 1) \). ### Step 2: Determine the range of \( 6\{x\}^2 - 5\{x\} + 1 \) Next, we need to analyze the expression \( 6\{x\}^2 - 5\{x\} + 1 \) for \( \{x\} \in [0, 1) \). Let \( y = \{x\} \). Then we need to evaluate the quadratic function: \[ g(y) = 6y^2 - 5y + 1 \] for \( y \in [0, 1) \). ### Step 3: Find the critical points of \( g(y) \) To find the minimum or maximum values of \( g(y) \), we can calculate its derivative: \[ g'(y) = 12y - 5 \] Setting the derivative to zero to find critical points: \[ 12y - 5 = 0 \implies y = \frac{5}{12} \] This critical point \( \frac{5}{12} \) lies within the interval \( [0, 1) \). ### Step 4: Evaluate \( g(y) \) at the endpoints and critical points Now we evaluate \( g(y) \) at the endpoints \( y = 0 \), \( y = 1 \) (not included), and at the critical point \( y = \frac{5}{12} \): 1. At \( y = 0 \): \[ g(0) = 6(0)^2 - 5(0) + 1 = 1 \] 2. At \( y = \frac{5}{12} \): \[ g\left(\frac{5}{12}\right) = 6\left(\frac{5}{12}\right)^2 - 5\left(\frac{5}{12}\right) + 1 \] Calculate: \[ = 6 \cdot \frac{25}{144} - \frac{25}{12} + 1 = \frac{150}{144} - \frac{300}{144} + \frac{144}{144} = \frac{150 - 300 + 144}{144} = \frac{-6}{144} = -\frac{1}{24} \] 3. As \( y \) approaches \( 1 \): \[ g(1) = 6(1)^2 - 5(1) + 1 = 6 - 5 + 1 = 2 \] ### Step 5: Determine the range of \( g(y) \) The minimum value of \( g(y) \) occurs at \( y = \frac{5}{12} \) and is \( -\frac{1}{24} \), and the maximum value as \( y \) approaches \( 1 \) is \( 2 \). Thus, the range of \( g(y) \) is: \[ [-\frac{1}{24}, 2) \] ### Step 6: Find the domain of \( f(g(y)) \) Since the domain of \( f(x) \) is \( (-\infty, 0] \), we need \( g(y) \leq 0 \): \[ -\frac{1}{24} \leq 0 \] This means \( g(y) \) is valid for \( y \) values that yield outputs in the range \( [-\frac{1}{24}, 0] \). ### Step 7: Solve \( g(y) \leq 0 \) To find the values of \( y \) such that \( g(y) \leq 0 \): \[ 6y^2 - 5y + 1 \leq 0 \] We can find the roots of the equation: \[ 6y^2 - 5y + 1 = 0 \] Using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 6 \cdot 1}}{2 \cdot 6} = \frac{5 \pm \sqrt{25 - 24}}{12} = \frac{5 \pm 1}{12} \] This gives us: \[ y = \frac{6}{12} = \frac{1}{2} \quad \text{and} \quad y = \frac{4}{12} = \frac{1}{3} \] ### Step 8: Determine the intervals The quadratic opens upwards (since the coefficient of \( y^2 \) is positive), so it is negative between the roots: \[ \frac{1}{3} \leq y \leq \frac{1}{2} \] ### Step 9: Convert back to \( x \) Since \( y = \{x\} \), we can express \( x \) as: \[ \{x\} = y \implies x = n + y \quad \text{for } n \in \mathbb{Z} \] Thus, we have: \[ n + \frac{1}{3} \leq x < n + \frac{1}{2} \quad \text{for integers } n \] ### Final Answer The domain of \( f(6\{x\}^2 - 5\{x\} + 1) \) is: \[ \bigcup_{n \in \mathbb{Z}} \left[n + \frac{1}{3}, n + \frac{1}{2}\right) \]

To find the domain of the function \( f(6\{x\}^2 - 5\{x\} + 1) \), where \( \{x\} \) represents the fractional part of \( x \), we start with the given domain of \( f(x) \), which is \( (-\infty, 0] \). ### Step 1: Understand the fractional part function The fractional part function \( \{x\} \) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] This means \( \{x\} \) always lies in the interval \( [0, 1) \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of f(f)=log{x},w h e r e{} represents the fractional part function).

Find the domain and range of f(x)=log{x},w h e r e{} represents the fractional part function).

If domain of y=f(x) is xin[-3,2] , then the domain of f([x]) is

If domain of f(x) is [1, 3], then the domain of f(log_(2)(x^(2)+3x-2)) is

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x.

The domain of definition of the function f(x)={x}^({x})+[x]^([x]) is where {dot} represents fractional part and [dot] represent greatest integral function). (a) R-I (b) R-[0,1] R-{Iuu(0,1)} (d) Iuu(0,1)

If f(x) is defined on [0,1], then the domain of f(3x^(2)) , is

find the range of the function f(x)=1/(2{-x})-{x} occurs at x equals where {.} represents the fractional part functional

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. Range of the function f(x)=log (sqrt2)(2-log(2)(16 sin ^(2)x +1)) is:

    Text Solution

    |

  2. Which of the following pair of functions are identical ?

    Text Solution

    |

  3. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  4. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  5. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  6. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  7. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  8. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  9. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  10. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  11. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  12. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  13. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  14. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  15. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  16. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  17. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  18. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  19. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |

  20. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |