Home
Class 12
MATHS
If f(x) =2 [x]+ cos x, then f: R ->R is...

If `f(x) =2 [x]+ cos x`, then `f: R ->R` is: (where [ ] denotes greatest integer function)

A

one-one and onto

B

one-one and into

C

many-one and into

D

many-one and onto

Text Solution

AI Generated Solution

The correct Answer is:
To determine the nature of the function \( f(x) = 2[x] + \cos x \), where \([x]\) denotes the greatest integer function, we will analyze its domain, range, and whether it is one-to-one (injective) and onto (surjective). ### Step 1: Determine the Domain The function \( f(x) = 2[x] + \cos x \) is defined for all real numbers \( x \). The greatest integer function \([x]\) is defined for all \( x \), and since \(\cos x\) is also defined for all \( x\), we conclude: - **Domain**: \( \mathbb{R} \) ### Step 2: Determine the Co-domain The co-domain is the set of values that \( f(x) \) can take. Since we are considering \( f: \mathbb{R} \to \mathbb{R} \), we initially assume: - **Co-domain**: \( \mathbb{R} \) ### Step 3: Analyze the Function The function can be expressed as: \[ f(x) = 2[x] + \cos x \] Here, \([x]\) takes integer values, and \(\cos x\) oscillates between -1 and 1. ### Step 4: Determine the Range 1. For any integer \( n \) (where \( n = [x] \)), the term \( 2[x] \) will take values \( 2n \). 2. The term \( \cos x \) will add values between -1 and 1 to \( 2n \). Thus, for \( n \) being any integer: \[ f(x) = 2n + \cos x \quad \text{where } n \in \mathbb{Z} \] This means: \[ f(x) \text{ can take values in the intervals } [2n - 1, 2n + 1] \] for each integer \( n \). ### Step 5: Determine if the Function is One-to-One To check if \( f \) is one-to-one, we need to see if \( f(x_1) = f(x_2) \) implies \( x_1 = x_2 \). 1. Suppose \( f(x_1) = f(x_2) \). 2. This implies: \[ 2[x_1] + \cos x_1 = 2[x_2] + \cos x_2 \] 3. If \( [x_1] = [x_2] \), then \( 2[x_1] = 2[x_2] \), and we have: \[ \cos x_1 = \cos x_2 \] 4. The cosine function is periodic and not one-to-one; thus, \( x_1 \) could be different from \( x_2 \) while having the same cosine value. Therefore, \( f(x) \) is **not one-to-one**. ### Step 6: Determine if the Function is Onto To check if \( f \) is onto, we need to see if every real number \( y \) can be expressed as \( f(x) \). 1. For any integer \( n \), the values \( f(x) \) can take are in the intervals \( [2n - 1, 2n + 1] \). 2. As \( n \) varies over all integers, the intervals cover all real numbers. Thus, the function is **onto**. ### Conclusion The function \( f(x) = 2[x] + \cos x \) is: - **Domain**: \( \mathbb{R} \) - **Co-domain**: \( \mathbb{R} \) - **Range**: \( \mathbb{R} \) - **One-to-One**: No - **Onto**: Yes ### Final Answer The function \( f: \mathbb{R} \to \mathbb{R} \) is onto but not one-to-one.

To determine the nature of the function \( f(x) = 2[x] + \cos x \), where \([x]\) denotes the greatest integer function, we will analyze its domain, range, and whether it is one-to-one (injective) and onto (surjective). ### Step 1: Determine the Domain The function \( f(x) = 2[x] + \cos x \) is defined for all real numbers \( x \). The greatest integer function \([x]\) is defined for all \( x \), and since \(\cos x\) is also defined for all \( x\), we conclude: - **Domain**: \( \mathbb{R} \) ### Step 2: Determine the Co-domain The co-domain is the set of values that \( f(x) \) can take. Since we are considering \( f: \mathbb{R} \to \mathbb{R} \), we initially assume: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is discontinuous

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f: R to R is defined by f(x)=x-[x]-(1)/(2) for all x in R , where [x] denotes the greatest integer function, then {x in R: f(x)=(1)/(2)} is equal to

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  2. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  3. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  4. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  5. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  6. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  7. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  8. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  9. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  10. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  12. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  13. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  14. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  15. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  16. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  17. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |

  18. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |

  19. If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then t...

    Text Solution

    |

  20. Q. Given the functions f(x)=e^(cos^-1(sin(x+pi/3))), g(x)=cosec^-1((4-...

    Text Solution

    |