Home
Class 12
MATHS
f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[...

`f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R`. If the function fog(x) is defined, then it domain and range respectively are:

A

`(0,oo)` and `[0,oo)`

B

`[-1,oo)` and `[0,oo)`

C

`[-1,oo)` and `[1-1/e-oo)`

D

`[-1,oo)` and `[1/3-1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the domain and range of the composite function \( f(g(x)) \) where \( f(x) = |x - 1| \) and \( g(x) = e^x \). ### Step-by-Step Solution: 1. **Identify the Functions and Their Domains**: - The function \( f(x) = |x - 1| \) is defined for all real numbers \( x \). Thus, the domain of \( f \) is \( \mathbb{R} \). - The function \( g(x) = e^x \) is defined for \( x \in [-1, \infty) \). Thus, the domain of \( g \) is \( [-1, \infty) \). 2. **Determine the Composite Function**: - The composite function \( f(g(x)) \) can be expressed as: \[ f(g(x)) = f(e^x) = |e^x - 1| \] 3. **Find the Domain of \( f(g(x)) \)**: - Since \( g(x) \) is defined for \( x \in [-1, \infty) \), we need to check if \( g(x) \) outputs values that are in the domain of \( f \). - The output of \( g(x) = e^x \) for \( x \in [-1, \infty) \) is: - At \( x = -1 \), \( g(-1) = e^{-1} \approx 0.3679 \). - As \( x \) approaches \( \infty \), \( g(x) \) approaches \( \infty \). - Therefore, the range of \( g(x) \) is \( (e^{-1}, \infty) \) which is approximately \( (0.3679, \infty) \). - Since \( f(x) \) is defined for all real numbers, the domain of \( f(g(x)) \) is the same as the domain of \( g(x) \), which is \( [-1, \infty) \). 4. **Find the Range of \( f(g(x)) \)**: - To find the range of \( f(g(x)) = |e^x - 1| \): - When \( e^x < 1 \) (which happens for \( x < 0 \)), \( |e^x - 1| = 1 - e^x \). - When \( e^x \geq 1 \) (which happens for \( x \geq 0 \)), \( |e^x - 1| = e^x - 1 \). - For \( x < 0 \): - As \( x \) approaches \( -1 \), \( e^{-1} \approx 0.3679 \) and \( |e^{-1} - 1| \approx 0.6321 \). - As \( x \) approaches \( 0 \), \( |e^0 - 1| = 0 \). - Therefore, the minimum value is \( 0 \) and the maximum value approaches \( 1 \) from below. - For \( x \geq 0 \): - As \( x \) approaches \( 0 \), \( |e^0 - 1| = 0 \). - As \( x \) approaches \( \infty \), \( |e^x - 1| \) approaches \( \infty \). - Thus, the range of \( f(g(x)) \) is \( [0, \infty) \). ### Final Answer: - **Domain of \( f(g(x)) \)**: \( [-1, \infty) \) - **Range of \( f(g(x)) \)**: \( [0, \infty) \)

To solve the problem, we need to find the domain and range of the composite function \( f(g(x)) \) where \( f(x) = |x - 1| \) and \( g(x) = e^x \). ### Step-by-Step Solution: 1. **Identify the Functions and Their Domains**: - The function \( f(x) = |x - 1| \) is defined for all real numbers \( x \). Thus, the domain of \( f \) is \( \mathbb{R} \). - The function \( g(x) = e^x \) is defined for \( x \in [-1, \infty) \). Thus, the domain of \( g \) is \( [-1, \infty) \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If f : [2,oo) to R be the function defined by f(x)=x^(2)-4x+5, then the range of f is

If f: R->R and g: R->R be functions defined by f(x)=x^2+1 and g(x)=sinx , then find fog and gof .

f(x)=e^x : R^+ ->R and g(x)=x^2-x : R->R Find domain and range of fog (x) and gof(x)

If the functions f and g defined from the set of real number R to R such that f(x) = e^(x) and g(x) = 3x - 2, then find functions fog and gof. Also, find the domain of the functions (fog)^(-1) and (gof)^(-1) .

If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then the range of the function f(g(x)) where verdefined is

If the function f and g are defined as f(x)=e^(x) and g(x)=3x-2, where f:R rarr R and g:R rarr R , find the function fog and gof. Also, find the domain of (fog)^(-1) " and " (gof)^(-1) .

Let f(x)=sinx and g(x)=(log)_e|x| If the ranges of the composition functions fog and gof are R_1 and R_2, respectively then (a) R_1{u:-1 le u < 1}, R_2={v:-oo v < 0} (b) R_1={u:-oo < u < 0}, R_2={v:-oo < v < 0} (c) R_1={u:-1 < u < 1},R_1={v:-oo V le 0}

Let f: R->R , g: R->R be two functions defined by f(x)=x^2+x+1 and g(x)=1-x^2 . Write fog\ (-2) .

Let : R->R ; f(x)=sinx and g: R->R ; g(x)=x^2 find fog and gof .

If f:[0,oo)->R and g: R->R be defined as f(x)=sqrt(x) and g(x)=-x^2-1, then find gof and fog

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  2. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  3. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  4. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  5. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  6. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  7. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  8. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  9. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  10. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  12. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  13. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  14. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  15. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  16. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  17. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |

  18. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |

  19. If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then t...

    Text Solution

    |

  20. Q. Given the functions f(x)=e^(cos^-1(sin(x+pi/3))), g(x)=cosec^-1((4-...

    Text Solution

    |