Home
Class 12
MATHS
Let f:(2,4)->(1,3) where f(x) = x-[x/2] ...

Let `f:(2,4)->(1,3)` where `f(x) = x-[x/2]` (where [.] denotes the greatest integer function).Then `f^-1 (x)` is

A

`2x`

B

`x+[x/2]`

C

`x+1`

D

`x-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = x - \left[\frac{x}{2}\right] \) where \( f: (2, 4) \to (1, 3) \), we will follow these steps: ### Step 1: Understand the Function The function is defined as: \[ f(x) = x - \left[\frac{x}{2}\right] \] where \([\cdot]\) denotes the greatest integer function (floor function). ### Step 2: Determine the Range of \( f(x) \) First, we need to evaluate \( \left[\frac{x}{2}\right] \) for \( x \) in the interval \( (2, 4) \): - For \( x \in (2, 4) \): - When \( 2 < x < 4 \), \( \frac{x}{2} \) will be in the interval \( (1, 2) \). - Therefore, \( \left[\frac{x}{2}\right] = 1 \) because the greatest integer less than \( \frac{x}{2} \) in this range is 1. ### Step 3: Simplify the Function Now substituting back into the function: \[ f(x) = x - 1 \] This means that for \( x \in (2, 4) \): \[ f(x) = x - 1 \implies f: (2, 4) \to (1, 3) \] ### Step 4: Find the Inverse Function To find the inverse function \( f^{-1}(x) \), we will set \( y = f(x) \): \[ y = x - 1 \] Now, solve for \( x \): \[ x = y + 1 \] Thus, we have: \[ f^{-1}(x) = x + 1 \] ### Step 5: Determine the Domain of \( f^{-1}(x) \) Since \( f(x) \) maps \( (2, 4) \) to \( (1, 3) \), the inverse function \( f^{-1}(x) \) will map \( (1, 3) \) back to \( (2, 4) \). ### Final Result The inverse function is: \[ f^{-1}(x) = x + 1 \quad \text{for } x \in (1, 3) \]

To find the inverse of the function \( f(x) = x - \left[\frac{x}{2}\right] \) where \( f: (2, 4) \to (1, 3) \), we will follow these steps: ### Step 1: Understand the Function The function is defined as: \[ f(x) = x - \left[\frac{x}{2}\right] \] where \([\cdot]\) denotes the greatest integer function (floor function). ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  2. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  3. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  4. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  5. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  6. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  7. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  8. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  9. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  10. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  12. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  13. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  14. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  15. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  16. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  17. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |

  18. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |

  19. If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then t...

    Text Solution

    |

  20. Q. Given the functions f(x)=e^(cos^-1(sin(x+pi/3))), g(x)=cosec^-1((4-...

    Text Solution

    |