Home
Class 12
MATHS
The value of cot^(-1){(sqrt(1-sinx)+sqrt...

The value of `cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))}`, where `(pi)/2ltxltpi`, is

A

`pi-x/2`

B

`(pi)/2+x/2`

C

`x/2`

D

`2pi-x/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( \cot^{-1} \left( \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right) \) for \( \frac{\pi}{2} < x < \pi \). ### Step 1: Define the expression Let \[ y = \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \] ### Step 2: Rationalize the denominator To simplify \( y \), we can multiply the numerator and denominator by the conjugate of the denominator: \[ y = \frac{(\sqrt{1 - \sin x} + \sqrt{1 + \sin x})(\sqrt{1 - \sin x} + \sqrt{1 + \sin x})}{(\sqrt{1 - \sin x} - \sqrt{1 + \sin x})(\sqrt{1 - \sin x} + \sqrt{1 + \sin x})} \] ### Step 3: Simplify the denominator The denominator simplifies as follows: \[ (\sqrt{1 - \sin x})^2 - (\sqrt{1 + \sin x})^2 = (1 - \sin x) - (1 + \sin x) = -2\sin x \] ### Step 4: Simplify the numerator The numerator becomes: \[ (\sqrt{1 - \sin x} + \sqrt{1 + \sin x})^2 = (1 - \sin x) + (1 + \sin x) + 2\sqrt{(1 - \sin x)(1 + \sin x)} = 2 + 2\sqrt{1 - \sin^2 x} = 2 + 2\cos x \] ### Step 5: Combine results Now we can write \( y \) as: \[ y = \frac{2 + 2\cos x}{-2\sin x} = -\frac{1 + \cos x}{\sin x} \] ### Step 6: Express in terms of cotangent Notice that: \[ -\frac{1 + \cos x}{\sin x} = -\cot\left(\frac{x}{2}\right) \] This is because \( 1 + \cos x = 2\cos^2\left(\frac{x}{2}\right) \) and \( \sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) \). ### Step 7: Find cotangent inverse Thus, we have: \[ y = -\cot\left(\frac{x}{2}\right) \] Therefore, \[ \cot^{-1}(y) = \cot^{-1}(-\cot\left(\frac{x}{2}\right)) \] ### Step 8: Use the cotangent identity Using the identity \( \cot^{-1}(-\cot \theta) = \pi - \theta \) for \( \theta \) in the appropriate range, we get: \[ \cot^{-1}(-\cot\left(\frac{x}{2}\right)) = \pi - \frac{x}{2} \] ### Final Answer Thus, the value of the expression is: \[ \cot^{-1} \left( \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right) = \pi - \frac{x}{2} \]

To solve the problem, we need to evaluate the expression \( \cot^{-1} \left( \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \right) \) for \( \frac{\pi}{2} < x < \pi \). ### Step 1: Define the expression Let \[ y = \frac{\sqrt{1 - \sin x} + \sqrt{1 + \sin x}}{\sqrt{1 - \sin x} - \sqrt{1 + \sin x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

The value of tan^(-1)[(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))](AA x in [0, (pi)/(2)]) is equal to

int(sinx)/(sqrt(1+sinx))dx

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Differentiate tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))} , 0 < x < pi

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2, x in (0,pi/4)

Differentiate w.r.t. x the function cot^(-1)""((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),0 < x < pi/2

If (5pi)/(2)ltxlt3pi , then the value of the expression (sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)) is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  2. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  3. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  4. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  5. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  6. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  7. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  8. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  9. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  10. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  12. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  13. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  14. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  15. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  16. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  17. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |

  18. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |

  19. If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then t...

    Text Solution

    |

  20. Q. Given the functions f(x)=e^(cos^-1(sin(x+pi/3))), g(x)=cosec^-1((4-...

    Text Solution

    |