Home
Class 12
MATHS
The domain of the function f (x) = sin^(...

The domain of the function `f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(sin(sinx))+log_(3{x}+1)(x^2+1)`, where {.} represents fractional part function, is:

A

`xepsilon{1}`

B

`xepsilonR-{1,-1}`

C

`xgt3,x!=1`

D

`xepsilon phi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \[ f(x) = \sin^{-1}\left(\frac{1+x^3}{2x^{3/2}}\right) + \sqrt{\sin(\sin x)} + \log_{3\{x\}+1}(x^2 + 1) \] we need to analyze each component of the function separately. ### Step 1: Analyze the Inverse Sine Function The first part of the function is \[ \sin^{-1}\left(\frac{1+x^3}{2x^{3/2}}\right) \] For the inverse sine function to be defined, the argument must be in the range \([-1, 1]\). Therefore, we need: \[ -1 \leq \frac{1+x^3}{2x^{3/2}} \leq 1 \] **Sub-step 1a: Solve the left inequality** \[ \frac{1+x^3}{2x^{3/2}} \geq -1 \] This simplifies to: \[ 1 + x^3 \geq -2x^{3/2} \] or \[ x^3 + 2x^{3/2} + 1 \geq 0 \] Since \(x^3 + 2x^{3/2} + 1\) is a sum of non-negative terms for \(x \geq 0\), this inequality holds for all \(x \geq 0\). **Sub-step 1b: Solve the right inequality** \[ \frac{1+x^3}{2x^{3/2}} \leq 1 \] This simplifies to: \[ 1 + x^3 \leq 2x^{3/2} \] or \[ x^3 - 2x^{3/2} + 1 \leq 0 \] Let \(y = x^{3/2}\), then \(x = y^{2/3}\). The inequality becomes: \[ y^{2} - 2y + 1 \leq 0 \] This factors to: \[ (y-1)^2 \leq 0 \] This implies \(y = 1\) or \(x = 1\). Thus, the only solution for this part is \(x = 1\). ### Step 2: Analyze the Square Root Function The second part of the function is \[ \sqrt{\sin(\sin x)} \] For the square root to be defined, we require: \[ \sin(\sin x) \geq 0 \] Since \(\sin x\) is always between \(-1\) and \(1\), \(\sin(\sin x)\) is non-negative when \(\sin x \in [0, \pi]\). Therefore, \(x\) must be in the interval: \[ [0, \pi] \] ### Step 3: Analyze the Logarithmic Function The third part of the function is \[ \log_{3\{x\}+1}(x^2 + 1) \] For the logarithm to be defined, we need: 1. \(3\{x\} + 1 > 0\) 2. \(x^2 + 1 > 0\) The second condition is always satisfied for all \(x\). The first condition requires that \(3\{x\} + 1 > 0\), which implies: \[ \{x\} \neq 0 \] This means \(x\) cannot be an integer. ### Step 4: Combine All Conditions From the analysis, we have: 1. \(x = 1\) from the inverse sine function. 2. \(x \in [0, \pi]\) from the square root function. 3. \(x \in \mathbb{R} \setminus \mathbb{Z}\) from the logarithmic function. The only value that satisfies all these conditions is \(x = 1\), which is not an integer. ### Conclusion Thus, the domain of the function \(f(x)\) is: \[ \boxed{\{1\}} \]

To find the domain of the function \[ f(x) = \sin^{-1}\left(\frac{1+x^3}{2x^{3/2}}\right) + \sqrt{\sin(\sin x)} + \log_{3\{x\}+1}(x^2 + 1) \] we need to analyze each component of the function separately. ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Domain of the function f(x)= sin^(- 1)(1+3x+2x^2)

Find the domain of the function f(x)=sin^(-1)(2x-3) .

Find the domain of the function f(x)=sin^(-1)(2x-3)

The domain of the function f(x)=sqrt(sin x-1) is

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

Find the domain of the function : f(x)=sin^(-1)((log)_2x)

The domain of the function f(x)=sin^(-1)""(1)/abs(x^(2)-1)+1/sqrt(sin^(2)x+sinx+1) is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  2. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  3. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  4. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  5. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  6. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  7. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  8. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  9. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  10. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  12. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  13. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  14. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  15. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  16. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  17. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |

  18. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |

  19. If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then t...

    Text Solution

    |

  20. Q. Given the functions f(x)=e^(cos^-1(sin(x+pi/3))), g(x)=cosec^-1((4-...

    Text Solution

    |