Home
Class 12
MATHS
The complete solution set of the inequal...

The complete solution set of the inequality` [cot^(-1)x]^2-6[cot^(-1)x]+9leq0` where [ ] denotes greatest integer function, is

A

`(-oo,cot3]`

B

`[cot3,cot2]`

C

`[cot3,oo)`

D

`(-oo,cot2]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \([cot^{-1}x]^2 - 6[cot^{-1}x] + 9 \leq 0\), where \([ ]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Substitute \( t \) Let \( t = [cot^{-1}x] \). The inequality then becomes: \[ t^2 - 6t + 9 \leq 0 \] ### Step 2: Factor the quadratic We can factor the quadratic expression: \[ t^2 - 6t + 9 = (t - 3)^2 \] Thus, the inequality can be rewritten as: \[ (t - 3)^2 \leq 0 \] ### Step 3: Analyze the inequality The expression \((t - 3)^2\) is a perfect square and is always non-negative. Therefore, the only time it equals zero is when: \[ t - 3 = 0 \implies t = 3 \] ### Step 4: Relate back to \( cot^{-1}x \) Since \( t = [cot^{-1}x] \), we have: \[ [cot^{-1}x] = 3 \] This means: \[ 3 \leq cot^{-1}x < 4 \] ### Step 5: Find the range of \( x \) To find the values of \( x \) that satisfy this inequality, we take the cotangent of the bounds: \[ cot(3) < x \leq cot(4) \] ### Step 6: Final solution Thus, the complete solution set for the inequality is: \[ x \in (cot(4), cot(3)] \]

To solve the inequality \([cot^{-1}x]^2 - 6[cot^{-1}x] + 9 \leq 0\), where \([ ]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Substitute \( t \) Let \( t = [cot^{-1}x] \). The inequality then becomes: \[ t^2 - 6t + 9 \leq 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0 , where [.] denotes the greatest integer function, is satisfied by

Complete solution set of [cot^(-1)x]+2[tan^(-1)x]=0, where [] denotes the greatest integer function, is equal to (a) (0,cot1) (b) (0,tan1) (tan1,oo) (d) (cot1,tan1)

Solution set of [sin^-1 x]gt [cos^-1 x] . where [*] denotes greatest integer function

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

int_(1)^(10pi)([sec^(-1)x]+[cot^(-1)x])dx , where [.] denotes the greatest integer function, is equal to:

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

Evaluate: int_(-pi/2)^(2pi)[cot^(-1)x]dx , where [dot] denotes the greatest integer function

The number of solutions of the equation tan^(-1)(4{x})+cot^(-1)(x+[x]))=(pi)/(2) is (where [.] denotes greatest integer function and {.} fractional part of function.

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  2. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  3. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  4. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  5. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  6. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  7. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  8. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  9. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  10. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  12. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  13. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  14. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  15. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  16. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  17. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |

  18. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |

  19. If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then t...

    Text Solution

    |

  20. Q. Given the functions f(x)=e^(cos^-1(sin(x+pi/3))), g(x)=cosec^-1((4-...

    Text Solution

    |