Home
Class 12
MATHS
Q. Given the functions f(x)=e^(cos^-1(si...

Q. Given the functions `f(x)=e^(cos^-1(sin(x+pi/3)))`, `g(x)=cosec^-1((4-2cos x)/3)` & the function `h(x)=f(x)` defined only for those values of x, which are common to the domains of the functions `f(x)` and `g(x)`, Calculate the range of the function `h(x)` .

A

`[e^((pi)/6),e^(pi)]`

B

`[e^(-(pi)/6),e^(pi)]`

C

`(e^((pi)/6),e^(pi))`

D

`[e^(-(pi)/6),e^((pi)/6)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to find the range of the function \( h(x) \) which is defined as \( h(x) = f(x) \) for values of \( x \) that are common to the domains of the functions \( f(x) \) and \( g(x) \). ### Step 1: Determine the Domain of \( f(x) \) The function \( f(x) \) is given by: \[ f(x) = e^{\cos^{-1}(\sin(x + \frac{\pi}{3}))} \] The \( \cos^{-1}(y) \) function is defined for \( y \) in the interval \([-1, 1]\). Therefore, we need: \[ \sin(x + \frac{\pi}{3}) \in [-1, 1] \] Since the sine function always lies within this interval for all \( x \), the domain of \( f(x) \) is: \[ \text{Domain of } f(x) = \mathbb{R} \] ### Step 2: Determine the Domain of \( g(x) \) The function \( g(x) \) is given by: \[ g(x) = \csc^{-1}\left(\frac{4 - 2\cos x}{3}\right) \] The \( \csc^{-1}(y) \) function is defined for \( y \leq -1 \) or \( y \geq 1 \). Thus, we need to consider both cases: 1. **Case 1:** \[ \frac{4 - 2\cos x}{3} \leq -1 \] This simplifies to: \[ 4 - 2\cos x \leq -3 \implies 7 \leq 2\cos x \implies \cos x \geq \frac{7}{2} \] Since \( \cos x \) can only take values in \([-1, 1]\), this case yields no valid solutions. 2. **Case 2:** \[ \frac{4 - 2\cos x}{3} \geq 1 \] This simplifies to: \[ 4 - 2\cos x \geq 3 \implies 1 \geq 2\cos x \implies \cos x \leq \frac{1}{2} \] The values of \( x \) for which \( \cos x \leq \frac{1}{2} \) occur in the intervals: \[ x \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3}, \frac{4\pi}{3}\right] \] ### Step 3: Find the Intersection of the Domains The domain of \( f(x) \) is \( \mathbb{R} \) and the domain of \( g(x) \) is: \[ \left[-\frac{\pi}{3}, \frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3}, \frac{4\pi}{3}\right] \] Thus, the domain of \( h(x) \) is: \[ \text{Domain of } h(x) = \left[-\frac{\pi}{3}, \frac{\pi}{3}\right] \cup \left[\frac{2\pi}{3}, \frac{4\pi}{3}\right] \] ### Step 4: Calculate the Range of \( h(x) \) Now we need to find the range of \( h(x) = f(x) = e^{\cos^{-1}(\sin(x + \frac{\pi}{3}))} \). 1. **Find the range of \( \sin(x + \frac{\pi}{3}) \)**: - The transformation \( x + \frac{\pi}{3} \) shifts the sine function. - The range of \( \sin(x + \frac{\pi}{3}) \) for \( x \in \left[-\frac{\pi}{3}, \frac{\pi}{3}\right] \) is: \[ \sin\left(-\frac{\pi}{3} + \frac{\pi}{3}\right) = \sin(0) = 0 \quad \text{to} \quad \sin\left(\frac{\pi}{3} + \frac{\pi}{3}\right) = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \] - Thus, the range of \( \sin(x + \frac{\pi}{3}) \) is \( [0, \frac{\sqrt{3}}{2}] \). 2. **Find the range of \( \cos^{-1}(y) \)**: - The range of \( \cos^{-1}(y) \) for \( y \in [0, \frac{\sqrt{3}}{2}] \) is: \[ \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \quad \text{to} \quad \cos^{-1}(0) = \frac{\pi}{2} \] 3. **Find the range of \( h(x) = e^{\cos^{-1}(\sin(x + \frac{\pi}{3}))} \)**: - The minimum value occurs at \( \cos^{-1}(0) = \frac{\pi}{2} \): \[ h(x)_{\text{min}} = e^{\frac{\pi}{2}} \] - The maximum value occurs at \( \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} \): \[ h(x)_{\text{max}} = e^{\frac{\pi}{6}} \] Thus, the range of \( h(x) \) is: \[ \left[e^{\frac{\pi}{6}}, e^{\frac{\pi}{2}}\right] \] ### Final Answer The range of the function \( h(x) \) is: \[ \boxed{\left[e^{\frac{\pi}{6}}, e^{\frac{\pi}{2}}\right]} \]

To solve the problem step-by-step, we need to find the range of the function \( h(x) \) which is defined as \( h(x) = f(x) \) for values of \( x \) that are common to the domains of the functions \( f(x) \) and \( g(x) \). ### Step 1: Determine the Domain of \( f(x) \) The function \( f(x) \) is given by: \[ f(x) = e^{\cos^{-1}(\sin(x + \frac{\pi}{3}))} \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise SUBJECTIVE_TYPE|179 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function f(x)=sin^(-1)(2x-3) .

The domain of the function f(x)= cos^(-1)(x+[x]) is

Range of the function f(x)= x cos( 1/x), xgt1

Range of the function f(x)= x cos( 1/x), xgt1

The function f(x) = sin ^(-1)(cos x) is

The domain of the function f(x)=max{sin x, cos x} is (-infty, infty) . The range of f(x) is

For which Domain, the functions f(x) = 2x^2-1 and g(x)=1-3x are equal to

Find the range of the function f(x)=4cos^(3)x-8cos(2)x+1 .

Find the domain of the function: f(x)=cos^(-1)((6-3x)/4)+cos e c^(-1)((x-1)/2)

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-SCQ_TYPE
  1. If domain of f(x) is(-oo,0), then domain of f(6{x}^2-5(x)+ 1) is (wher...

    Text Solution

    |

  2. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  3. If f(x) =2 [x]+ cos x, then f: R ->R is: (where [ ] denotes greatest ...

    Text Solution

    |

  4. If f:R to R, f(x) ={(x|x|-4", "x in Q),(x|x|-sqrt(3)", "x notin Q...

    Text Solution

    |

  5. f(x) = |x-1|, f: R^+->R, g(x) = e^x, g:[-1,oo)->R. If the function fog...

    Text Solution

    |

  6. Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greates...

    Text Solution

    |

  7. Find the condition so that the function f(x)=x^(3)+ax^(2)+bx+c is an i...

    Text Solution

    |

  8. If the function f:[1,\ oo)->[1,\ oo) defined by f(x)=2^(x(x-1)) is inv...

    Text Solution

    |

  9. f:N to N, where f(x)=x-(-1)^(x), Then f is

    Text Solution

    |

  10. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  11. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1...

    Text Solution

    |

  12. The domain of the function f (x) = sin^(-1)((1+x^3)/(2x^(3/2)))+sqrt(s...

    Text Solution

    |

  13. A function g(x) satisfies the following conditions (i) Domain of g i...

    Text Solution

    |

  14. The complete solution set of the inequality [cot^(-1)x]^2-6[cot^(-1)x]...

    Text Solution

    |

  15. sin^-1(sin 5)> x^2-4 x holds if

    Text Solution

    |

  16. If sin^(-1)(x-(x^2)/2+(x^3)/4-ddot)+cos^(-1)(x^2-(x^4)/2+(x^6)/4)=pi/2...

    Text Solution

    |

  17. If cot^(-1) (sqrt(cos alpha)) - tan^(-1) (sqrt(cos alpha)) = x, then s...

    Text Solution

    |

  18. The trigonometric equation sin^(-1) x = 2 sin^(-1) a has a solution fo...

    Text Solution

    |

  19. If f(x)=cot^-1 x ; R^+ -> (0,pi/2) and g(x)=2x-x^2 ; R-> R . Then t...

    Text Solution

    |

  20. Q. Given the functions f(x)=e^(cos^-1(sin(x+pi/3))), g(x)=cosec^-1((4-...

    Text Solution

    |