Home
Class 12
MATHS
The domain of f(x) such that the f(x) = ...

The domain of `f(x)` such that the `f(x) = [[x + 1/2]] / [[x - 1/2]]` is prime is `[X_1, X_2)`, then the value of `2(x_1 ^2 + x_2 ^2)` Where [.] denotes greatest integer function less than or equal to x]

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the domain of the function \( f(x) = \frac{\lfloor x + \frac{1}{2} \rfloor}{\lfloor x - \frac{1}{2} \rfloor} \) such that \( f(x) \) is a prime number. Here, \( \lfloor . \rfloor \) denotes the greatest integer function. ### Step-by-step Solution: 1. **Understanding the Function**: - The function is defined as \( f(x) = \frac{\lfloor x + \frac{1}{2} \rfloor}{\lfloor x - \frac{1}{2} \rfloor} \). - We need to find when this function yields a prime number. 2. **Analyzing the Greatest Integer Function**: - The expression \( \lfloor x + \frac{1}{2} \rfloor \) can be simplified: - If \( x \) is in the interval \( [n - \frac{1}{2}, n + \frac{1}{2}) \) for some integer \( n \), then \( \lfloor x + \frac{1}{2} \rfloor = n \). - Similarly, \( \lfloor x - \frac{1}{2} \rfloor \): - If \( x \) is in the interval \( [n - \frac{1}{2}, n + \frac{1}{2}) \), then \( \lfloor x - \frac{1}{2} \rfloor = n - 1 \). 3. **Finding the Values of \( f(x) \)**: - Thus, for \( x \) in \( [n - \frac{1}{2}, n + \frac{1}{2}) \): \[ f(x) = \frac{n}{n - 1} \] - This expression is defined for \( n > 1 \) (since \( n - 1 \) must not be zero). 4. **Finding Prime Values**: - We need \( \frac{n}{n - 1} \) to be prime: \[ \frac{n}{n - 1} = 1 + \frac{1}{n - 1} \] - For this to be an integer, \( n - 1 \) must divide 1, which means \( n - 1 = 1 \) or \( n - 1 = -1 \). - Hence, \( n = 2 \) (since \( n \) must be positive). 5. **Finding the Domain**: - For \( n = 2 \): \[ f(x) = \frac{2}{1} = 2 \] - The corresponding interval for \( n = 2 \) is: \[ [\frac{3}{2}, \frac{5}{2}) \] - Thus, \( x_1 = \frac{3}{2} \) and \( x_2 = \frac{5}{2} \). 6. **Calculating the Required Expression**: - We need to find \( 2(x_1^2 + x_2^2) \): \[ x_1^2 = \left(\frac{3}{2}\right)^2 = \frac{9}{4}, \quad x_2^2 = \left(\frac{5}{2}\right)^2 = \frac{25}{4} \] \[ x_1^2 + x_2^2 = \frac{9}{4} + \frac{25}{4} = \frac{34}{4} = \frac{17}{2} \] \[ 2(x_1^2 + x_2^2) = 2 \cdot \frac{17}{2} = 17 \] ### Final Answer: The value of \( 2(x_1^2 + x_2^2) \) is \( \boxed{17} \).

To solve the problem, we need to find the domain of the function \( f(x) = \frac{\lfloor x + \frac{1}{2} \rfloor}{\lfloor x - \frac{1}{2} \rfloor} \) such that \( f(x) \) is a prime number. Here, \( \lfloor . \rfloor \) denotes the greatest integer function. ### Step-by-step Solution: 1. **Understanding the Function**: - The function is defined as \( f(x) = \frac{\lfloor x + \frac{1}{2} \rfloor}{\lfloor x - \frac{1}{2} \rfloor} \). - We need to find when this function yields a prime number. ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-INTEGER_TYPE
  1. The domain of the function f(x)=sqrt(sinx+cosx)+sqrt(7x-x^(2)-6) is

    Text Solution

    |

  2. The domain of f(x) such that the f(x) = [[x + 1/2]] / [[x - 1/2]] is p...

    Text Solution

    |

  3. Number of integers in the range of the function f(x) = (x^3 + 2x^2 + ...

    Text Solution

    |

  4. Range of the function f(x)=|sinx|cosx|+cosx|sinx||is [a,b] then (a+b) ...

    Text Solution

    |

  5. If fa n dg are two distinct linear functions defined on R such that th...

    Text Solution

    |

  6. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  7. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  8. If f(x) = (4a-7)/3 x^3+(a-3)x^2 +x+5 is one-one function find the rang...

    Text Solution

    |

  9. Number of solutions of the equation e^(-sin^2x) = tan2x in [0, 10pi] i...

    Text Solution

    |

  10. Let f(x)=([a]^(2)-5[a]+4)x^(3)-(6{a}^(2)-5{a}+1)x-(tanx)xx"sgn " x be...

    Text Solution

    |

  11. Let f be a one-one function with domain (21, 22, 23) and range {x,y,z)...

    Text Solution

    |

  12. Let f:[-sqrt(2)+1,sqrt(2)+1]to[(-sqrt(2)+1),2,(sqrt(2)+1)/2] be a func...

    Text Solution

    |

  13. The number of real solutions of the equation x^3+1=2\ root(3)(2x-1), i...

    Text Solution

    |

  14. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, prove that x^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  15. The sum of absolute value of all possible values of x for which cos t...

    Text Solution

    |

  16. If cot^(-1). (n)/(pi) gt (pi)/(6), n in N, then the maximum value of n...

    Text Solution

    |

  17. If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(c...

    Text Solution

    |

  18. If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4, then tan theta is...

    Text Solution

    |

  19. The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^...

    Text Solution

    |

  20. The number of solution (s) of the equation sin^-1x + cos^-1(1-x)=sin^-...

    Text Solution

    |