Home
Class 12
MATHS
Let f:[-sqrt(2)+1,sqrt(2)+1]to[(-sqrt(2)...

Let `f:[-sqrt(2)+1,sqrt(2)+1]to[(-sqrt(2)+1),2,(sqrt(2)+1)/2]` be a function defined by `f(x)=(1-x)/(1+x^(2))`.
If `f^(-1)(x)={((-1+lamda(sqrt(4x-4x^(2)+1)))/(2x),x!=0),(mu,x=0):}` then `lamda+mu` is.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the inverse of the function \( f(x) = \frac{1-x}{1+x^2} \) and determine the values of \( \lambda \) and \( \mu \) in the expression for \( f^{-1}(x) \). ### Step 1: Set up the equation We start with the function: \[ y = \frac{1 - x}{1 + x^2} \] We need to express \( x \) in terms of \( y \). Rearranging gives: \[ y(1 + x^2) = 1 - x \] This simplifies to: \[ yx^2 + xy + y - 1 = 0 \] ### Step 2: Use the quadratic formula This is a quadratic equation in \( x \): \[ yx^2 + xy + (y - 1) = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), we identify \( a = y \), \( b = y \), and \( c = y - 1 \): \[ x = \frac{-y \pm \sqrt{y^2 - 4y(y - 1)}}{2y} \] ### Step 3: Simplify the expression under the square root Calculating the discriminant: \[ y^2 - 4y^2 + 4y = -3y^2 + 4y \] Thus, we have: \[ x = \frac{-y \pm \sqrt{-3y^2 + 4y}}{2y} \] ### Step 4: Choose the correct sign According to the problem, we will take the positive root: \[ x = \frac{-y + \sqrt{-3y^2 + 4y}}{2y} \] This gives us the inverse function: \[ f^{-1}(y) = \frac{-y + \sqrt{4y - 4y^2 + 1}}{2y} \] ### Step 5: Identify \( \lambda \) and \( \mu \) From the problem, we have: \[ f^{-1}(x) = \left\{ \frac{-1 + \lambda \sqrt{4x - 4x^2 + 1}}{2x}, x \neq 0 \right\}, \quad f^{-1}(0) = \mu \] We can compare: \[ \frac{-y + \sqrt{4y - 4y^2 + 1}}{2y} = \frac{-1 + \lambda \sqrt{4x - 4x^2 + 1}}{2x} \] From this, we can identify that \( \lambda = 1 \). ### Step 6: Calculate \( f^{-1}(0) \) To find \( \mu \), we need to evaluate \( f^{-1}(0) \): \[ f^{-1}(0) = \lim_{x \to 0} \frac{-x + \sqrt{4x - 4x^2 + 1}}{2x} \] Using L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{-1 + \frac{4 - 8x}{2\sqrt{4x - 4x^2 + 1}}}{2} \] Evaluating this limit as \( x \to 0 \): \[ = \frac{-1 + 2}{2} = \frac{1}{2} \] Thus, \( \mu = 1 \). ### Step 7: Calculate \( \lambda + \mu \) Now we can find: \[ \lambda + \mu = 1 + 1 = 2 \] ### Final Answer \[ \lambda + \mu = 2 \]

To solve the problem step by step, we need to find the inverse of the function \( f(x) = \frac{1-x}{1+x^2} \) and determine the values of \( \lambda \) and \( \mu \) in the expression for \( f^{-1}(x) \). ### Step 1: Set up the equation We start with the function: \[ y = \frac{1 - x}{1 + x^2} \] We need to express \( x \) in terms of \( y \). Rearranging gives: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

The function f(x)=sqrt(1-sqrt(1-x^2))

The domain of the function f defined by f(x)= sqrt(a-x)+(1)/( sqrt(x^(2)-a^(2)) is

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

Find the domain of the function f(x) defined by f(x)=sqrt(4-x)+1/(sqrt(x^2-1)) .

The range of the function f(x)=sqrt(1-x^2)/(1+|x|) is

The domain of the function of defined by f(x)=sqrt(4-x) +(1)/(x^(2)-1) is equal to:

The domain of the function f(x) given by f(x)=(sqrt(4-x^(2)))/(sin^(-1)(2-x)) is

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

The function f : R -> R defined as f (x) =1/2 In (sqrt(sqrt(x^2+1)+x) + sqrt(sqrt(x^2+1)-x)) is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-INTEGER_TYPE
  1. The domain of f(x) such that the f(x) = [[x + 1/2]] / [[x - 1/2]] is p...

    Text Solution

    |

  2. Number of integers in the range of the function f(x) = (x^3 + 2x^2 + ...

    Text Solution

    |

  3. Range of the function f(x)=|sinx|cosx|+cosx|sinx||is [a,b] then (a+b) ...

    Text Solution

    |

  4. If fa n dg are two distinct linear functions defined on R such that th...

    Text Solution

    |

  5. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  6. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  7. If f(x) = (4a-7)/3 x^3+(a-3)x^2 +x+5 is one-one function find the rang...

    Text Solution

    |

  8. Number of solutions of the equation e^(-sin^2x) = tan2x in [0, 10pi] i...

    Text Solution

    |

  9. Let f(x)=([a]^(2)-5[a]+4)x^(3)-(6{a}^(2)-5{a}+1)x-(tanx)xx"sgn " x be...

    Text Solution

    |

  10. Let f be a one-one function with domain (21, 22, 23) and range {x,y,z)...

    Text Solution

    |

  11. Let f:[-sqrt(2)+1,sqrt(2)+1]to[(-sqrt(2)+1),2,(sqrt(2)+1)/2] be a func...

    Text Solution

    |

  12. The number of real solutions of the equation x^3+1=2\ root(3)(2x-1), i...

    Text Solution

    |

  13. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, prove that x^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  14. The sum of absolute value of all possible values of x for which cos t...

    Text Solution

    |

  15. If cot^(-1). (n)/(pi) gt (pi)/(6), n in N, then the maximum value of n...

    Text Solution

    |

  16. If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(c...

    Text Solution

    |

  17. If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4, then tan theta is...

    Text Solution

    |

  18. The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^...

    Text Solution

    |

  19. The number of solution (s) of the equation sin^-1x + cos^-1(1-x)=sin^-...

    Text Solution

    |

  20. Find the value of 3sum(n=1)^(oo) {1/(pi) sum(k=1)^(oo) cot^(-1)(1+2sqr...

    Text Solution

    |