Home
Class 12
MATHS
The sum of absolute value of all possibl...

The sum of absolute value of all possible values of `x` for which `cos tan^(-1) sin cot^(-1)x=sqrt(226/227)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\tan^{-1}(\sin(\cot^{-1}(x)))) = \sqrt{\frac{226}{227}} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos(\tan^{-1}(\sin(\cot^{-1}(x)))) \] We know that \( \cot^{-1}(x) \) can be expressed in terms of sine. Specifically, we have: \[ \sin(\cot^{-1}(x)) = \frac{x}{\sqrt{1+x^2}} \] Thus, we can rewrite our expression as: \[ \cos(\tan^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)) \] ### Step 2: Use the identity for cosine of arctangent Using the identity \( \cos(\tan^{-1}(y)) = \frac{1}{\sqrt{1+y^2}} \), we can substitute \( y = \frac{x}{\sqrt{1+x^2}} \): \[ \cos(\tan^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right)) = \frac{1}{\sqrt{1+\left(\frac{x}{\sqrt{1+x^2}}\right)^2}} \] Calculating \( \left(\frac{x}{\sqrt{1+x^2}}\right)^2 \): \[ \left(\frac{x}{\sqrt{1+x^2}}\right)^2 = \frac{x^2}{1+x^2} \] So we have: \[ 1+\left(\frac{x}{\sqrt{1+x^2}}\right)^2 = 1 + \frac{x^2}{1+x^2} = \frac{1+x^2+x^2}{1+x^2} = \frac{1+2x^2}{1+x^2} \] Thus: \[ \cos(\tan^{-1}(\sin(\cot^{-1}(x)))) = \frac{1}{\sqrt{\frac{1+2x^2}{1+x^2}}} = \frac{\sqrt{1+x^2}}{\sqrt{1+2x^2}} \] ### Step 3: Set the equation Now we set the expression equal to \( \sqrt{\frac{226}{227}} \): \[ \frac{\sqrt{1+x^2}}{\sqrt{1+2x^2}} = \sqrt{\frac{226}{227}} \] ### Step 4: Square both sides Squaring both sides gives: \[ \frac{1+x^2}{1+2x^2} = \frac{226}{227} \] ### Step 5: Cross-multiply Cross-multiplying yields: \[ 227(1+x^2) = 226(1+2x^2) \] Expanding both sides: \[ 227 + 227x^2 = 226 + 452x^2 \] ### Step 6: Rearranging the equation Rearranging gives: \[ 227 - 226 = 452x^2 - 227x^2 \] This simplifies to: \[ 1 = 225x^2 \] Thus: \[ x^2 = \frac{1}{225} \] ### Step 7: Solve for x Taking the square root gives: \[ x = \pm \frac{1}{15} \] ### Step 8: Find the sum of absolute values The absolute values of \( x \) are: \[ |x| = \frac{1}{15} \] Thus, the sum of the absolute values of all possible values of \( x \) is: \[ \frac{1}{15} + \frac{1}{15} = \frac{2}{15} \] ### Final Answer The final answer is: \[ \text{Sum of absolute values} = \frac{2}{15} \]

To solve the equation \( \cos(\tan^{-1}(\sin(\cot^{-1}(x)))) = \sqrt{\frac{226}{227}} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \cos(\tan^{-1}(\sin(\cot^{-1}(x)))) \] We know that \( \cot^{-1}(x) \) can be expressed in terms of sine. Specifically, we have: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Find all possible values of x and y for which cos^(-1)sqrtx+cos^(-1)sqrt(1-x)+cos^(-1)sqrt(1-y)=((3pi)/4)

Value of tan^(- 1){sin(cos^(- 1)sqrt(2/3))} is

Find the value of, cos [tan^(-1) {sin (cot^(-1)x)}]

Prove the following: "cos"{tan^(-1){sin(cot^(-1)x)}}= sqrt((1+x^2)/(2+x^2))

The set of values of x for which tan^(-1)(x)/sqrt(1-x^(2))=sin^(-1) x holds is

Prove that : sin cot^(-1) tan cos^(-1) x=x

Find the possible values of sin^(-1) (1 - x) + cos^(-1) sqrt(x -2)

Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-INTEGER_TYPE
  1. The domain of f(x) such that the f(x) = [[x + 1/2]] / [[x - 1/2]] is p...

    Text Solution

    |

  2. Number of integers in the range of the function f(x) = (x^3 + 2x^2 + ...

    Text Solution

    |

  3. Range of the function f(x)=|sinx|cosx|+cosx|sinx||is [a,b] then (a+b) ...

    Text Solution

    |

  4. If fa n dg are two distinct linear functions defined on R such that th...

    Text Solution

    |

  5. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  6. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  7. If f(x) = (4a-7)/3 x^3+(a-3)x^2 +x+5 is one-one function find the rang...

    Text Solution

    |

  8. Number of solutions of the equation e^(-sin^2x) = tan2x in [0, 10pi] i...

    Text Solution

    |

  9. Let f(x)=([a]^(2)-5[a]+4)x^(3)-(6{a}^(2)-5{a}+1)x-(tanx)xx"sgn " x be...

    Text Solution

    |

  10. Let f be a one-one function with domain (21, 22, 23) and range {x,y,z)...

    Text Solution

    |

  11. Let f:[-sqrt(2)+1,sqrt(2)+1]to[(-sqrt(2)+1),2,(sqrt(2)+1)/2] be a func...

    Text Solution

    |

  12. The number of real solutions of the equation x^3+1=2\ root(3)(2x-1), i...

    Text Solution

    |

  13. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, prove that x^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  14. The sum of absolute value of all possible values of x for which cos t...

    Text Solution

    |

  15. If cot^(-1). (n)/(pi) gt (pi)/(6), n in N, then the maximum value of n...

    Text Solution

    |

  16. If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(c...

    Text Solution

    |

  17. If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4, then tan theta is...

    Text Solution

    |

  18. The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^...

    Text Solution

    |

  19. The number of solution (s) of the equation sin^-1x + cos^-1(1-x)=sin^-...

    Text Solution

    |

  20. Find the value of 3sum(n=1)^(oo) {1/(pi) sum(k=1)^(oo) cot^(-1)(1+2sqr...

    Text Solution

    |