Home
Class 12
MATHS
If x in (0,1) and f(x)=sec{tan^(-1)((sin...

If `x in (0,1)` and `f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)+sin(sin^(-1)x)))}`, then `sum_(r=2)^(10)f(1/r)` is _______ .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Understand the Function Given the function: \[ f(x) = \sec\left(\tan^{-1}\left(\frac{\sin(\cos^{-1}x) + \cos(\sin^{-1}x)}{\cos(\cos^{-1}x) + \sin(\sin^{-1}x)}\right)\right) \] ### Step 2: Simplify the Components We know the following identities: - \( \sin(\cos^{-1}x) = \sqrt{1 - x^2} \) - \( \cos(\sin^{-1}x) = \sqrt{1 - x^2} \) - \( \cos(\cos^{-1}x) = x \) - \( \sin(\sin^{-1}x) = x \) Using these identities, we can simplify the function: - The numerator becomes: \[ \sin(\cos^{-1}x) + \cos(\sin^{-1}x) = \sqrt{1 - x^2} + \sqrt{1 - x^2} = 2\sqrt{1 - x^2} \] - The denominator becomes: \[ \cos(\cos^{-1}x) + \sin(\sin^{-1}x) = x + x = 2x \] Thus, we can rewrite \( f(x) \): \[ f(x) = \sec\left(\tan^{-1}\left(\frac{2\sqrt{1 - x^2}}{2x}\right)\right) = \sec\left(\tan^{-1}\left(\frac{\sqrt{1 - x^2}}{x}\right)\right) \] ### Step 3: Use Right Triangle Relationships In a right triangle where: - Opposite side = \( \sqrt{1 - x^2} \) - Adjacent side = \( x \) The hypotenuse \( h \) can be calculated using the Pythagorean theorem: \[ h = \sqrt{(\sqrt{1 - x^2})^2 + x^2} = \sqrt{1} = 1 \] Thus, we have: \[ \tan(\theta) = \frac{\sqrt{1 - x^2}}{x} \] \[ \sec(\theta) = \frac{1}{\cos(\theta)} = \frac{h}{x} = \frac{1}{x} \] Therefore, \[ f(x) = \frac{1}{x} \] ### Step 4: Calculate the Summation Now we need to find: \[ \sum_{r=2}^{10} f\left(\frac{1}{r}\right) \] Substituting \( x = \frac{1}{r} \): \[ f\left(\frac{1}{r}\right) = r \] Thus, the summation becomes: \[ \sum_{r=2}^{10} r \] This is the sum of the first 10 natural numbers minus the sum of the first natural number: \[ \sum_{r=1}^{10} r = \frac{10 \times 11}{2} = 55 \] \[ \sum_{r=1}^{1} r = 1 \] So, \[ \sum_{r=2}^{10} r = 55 - 1 = 54 \] ### Final Answer The value of \( \sum_{r=2}^{10} f\left(\frac{1}{r}\right) \) is: \[ \boxed{54} \]

To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Understand the Function Given the function: \[ f(x) = \sec\left(\tan^{-1}\left(\frac{\sin(\cos^{-1}x) + \cos(\sin^{-1}x)}{\cos(\cos^{-1}x) + \sin(\sin^{-1}x)}\right)\right) \] ### Step 2: Simplify the Components We know the following identities: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

cos(a sin ^(-1)"1/x)

If cos^(-1)x gt sin^(-1) x , then

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

If cos^(-1)x >sin^(-1)x , then

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

If f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(-1)(sec(cos^(-1)x)) , then f(x) takes

Evaluate int_(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x)/(sin(sin^(-1)x)))|dx

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-INTEGER_TYPE
  1. The domain of f(x) such that the f(x) = [[x + 1/2]] / [[x - 1/2]] is p...

    Text Solution

    |

  2. Number of integers in the range of the function f(x) = (x^3 + 2x^2 + ...

    Text Solution

    |

  3. Range of the function f(x)=|sinx|cosx|+cosx|sinx||is [a,b] then (a+b) ...

    Text Solution

    |

  4. If fa n dg are two distinct linear functions defined on R such that th...

    Text Solution

    |

  5. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  6. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  7. If f(x) = (4a-7)/3 x^3+(a-3)x^2 +x+5 is one-one function find the rang...

    Text Solution

    |

  8. Number of solutions of the equation e^(-sin^2x) = tan2x in [0, 10pi] i...

    Text Solution

    |

  9. Let f(x)=([a]^(2)-5[a]+4)x^(3)-(6{a}^(2)-5{a}+1)x-(tanx)xx"sgn " x be...

    Text Solution

    |

  10. Let f be a one-one function with domain (21, 22, 23) and range {x,y,z)...

    Text Solution

    |

  11. Let f:[-sqrt(2)+1,sqrt(2)+1]to[(-sqrt(2)+1),2,(sqrt(2)+1)/2] be a func...

    Text Solution

    |

  12. The number of real solutions of the equation x^3+1=2\ root(3)(2x-1), i...

    Text Solution

    |

  13. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, prove that x^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  14. The sum of absolute value of all possible values of x for which cos t...

    Text Solution

    |

  15. If cot^(-1). (n)/(pi) gt (pi)/(6), n in N, then the maximum value of n...

    Text Solution

    |

  16. If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(c...

    Text Solution

    |

  17. If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4, then tan theta is...

    Text Solution

    |

  18. The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^...

    Text Solution

    |

  19. The number of solution (s) of the equation sin^-1x + cos^-1(1-x)=sin^-...

    Text Solution

    |

  20. Find the value of 3sum(n=1)^(oo) {1/(pi) sum(k=1)^(oo) cot^(-1)(1+2sqr...

    Text Solution

    |