Home
Class 12
MATHS
The number of solution (s) of the equati...

The number of solution `(s)` of the equation `sin^-1x + cos^-1(1-x)=sin^-1(-х)` is/are

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}x + \cos^{-1}(1-x) = \sin^{-1}(-x) \), we will follow these steps: ### Step 1: Rewrite the equation The equation is given as: \[ \sin^{-1}x + \cos^{-1}(1-x) = \sin^{-1}(-x) \] ### Step 2: Use the identity for inverse sine and cosine We know that: \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Thus, we can rewrite the equation as: \[ \sin^{-1}x + \cos^{-1}(1-x) = -\sin^{-1}(x) \] ### Step 3: Rearranging the equation Rearranging gives: \[ \sin^{-1}x + \sin^{-1}(x) + \cos^{-1}(1-x) = 0 \] This simplifies to: \[ 2\sin^{-1}x + \cos^{-1}(1-x) = 0 \] ### Step 4: Isolate \(\cos^{-1}(1-x)\) Now, we can isolate \(\cos^{-1}(1-x)\): \[ \cos^{-1}(1-x) = -2\sin^{-1}x \] ### Step 5: Use the cosine identity Using the identity \( \cos^{-1}(y) = \pi/2 - \sin^{-1}(y) \), we can rewrite: \[ \pi/2 - \sin^{-1}(1-x) = -2\sin^{-1}(x) \] Rearranging gives: \[ \sin^{-1}(1-x) = \pi/2 + 2\sin^{-1}(x) \] ### Step 6: Apply sine to both sides Taking the sine of both sides, we have: \[ 1-x = \sin\left(\frac{\pi}{2} + 2\sin^{-1}(x)\right) \] Using the sine addition formula: \[ \sin\left(\frac{\pi}{2} + \theta\right) = \cos(\theta) \] Thus: \[ 1-x = \cos(2\sin^{-1}(x)) \] ### Step 7: Use the double angle formula for cosine Using the double angle formula: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] Letting \(\theta = \sin^{-1}(x)\), we have: \[ 1-x = 1 - 2x^2 \] ### Step 8: Simplify the equation This simplifies to: \[ x = 2x^2 \] Rearranging gives: \[ 2x^2 - x = 0 \] Factoring out \(x\): \[ x(2x - 1) = 0 \] ### Step 9: Solve for \(x\) Setting each factor to zero gives: 1. \(x = 0\) 2. \(2x - 1 = 0 \Rightarrow x = \frac{1}{2}\) ### Step 10: Check the solutions Now we need to check if both solutions are valid in the original equation: 1. For \(x = 0\): \[ \sin^{-1}(0) + \cos^{-1}(1) = \sin^{-1}(0) \Rightarrow 0 + 0 = 0 \quad \text{(True)} \] 2. For \(x = \frac{1}{2}\): \[ \sin^{-1}\left(\frac{1}{2}\right) + \cos^{-1}\left(\frac{1}{2}\right) = \sin^{-1}\left(-\frac{1}{2}\right) \] \[ \frac{\pi}{6} + \frac{\pi}{3} = -\frac{\pi}{6} \Rightarrow \frac{\pi}{2} \neq -\frac{\pi}{6} \quad \text{(False)} \] ### Conclusion The only valid solution is \(x = 0\). Therefore, the number of solutions is: \[ \text{Number of solutions} = 1 \]

To solve the equation \( \sin^{-1}x + \cos^{-1}(1-x) = \sin^{-1}(-x) \), we will follow these steps: ### Step 1: Rewrite the equation The equation is given as: \[ \sin^{-1}x + \cos^{-1}(1-x) = \sin^{-1}(-x) \] ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MCQ_TYPE|31 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise MATCH THE COLUMN|2 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation sin^(-1)|x|=|cos^(-1)x| are

The number of solution (s) of the equation sin^(- 1)(1-x)-2sin^(- 1)x=pi/2 is/are

The total number of solutions of the equation sin^-1(3/5 x)+sin^-1(4/5 x)=sin^-1 x

Number of solution of the equation 2sin^(-1)(x+2)=cos^(-1)(x+3) is :

Number of solution (s) of the equations cos^(-1) ( cos x) = x^(2) is

The number of roots of the equation sin^(-1)x-cos^(-1)x=sin^(-1)(5x-3) is/ are

Number of solution(s) of the equation 2tan^(-1)(2x-1)=cos^(-1)(x) is :

Number of solutions of the equation 2(sin^(-1)x)^2-sin^(-1)x-6=0 is

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-INTEGER_TYPE
  1. The domain of f(x) such that the f(x) = [[x + 1/2]] / [[x - 1/2]] is p...

    Text Solution

    |

  2. Number of integers in the range of the function f(x) = (x^3 + 2x^2 + ...

    Text Solution

    |

  3. Range of the function f(x)=|sinx|cosx|+cosx|sinx||is [a,b] then (a+b) ...

    Text Solution

    |

  4. If fa n dg are two distinct linear functions defined on R such that th...

    Text Solution

    |

  5. If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}]. Then the value of ...

    Text Solution

    |

  6. If f9x)=a x^7+b x^3+c x-5,a , b , c are real constants, and f(-7)=7, t...

    Text Solution

    |

  7. If f(x) = (4a-7)/3 x^3+(a-3)x^2 +x+5 is one-one function find the rang...

    Text Solution

    |

  8. Number of solutions of the equation e^(-sin^2x) = tan2x in [0, 10pi] i...

    Text Solution

    |

  9. Let f(x)=([a]^(2)-5[a]+4)x^(3)-(6{a}^(2)-5{a}+1)x-(tanx)xx"sgn " x be...

    Text Solution

    |

  10. Let f be a one-one function with domain (21, 22, 23) and range {x,y,z)...

    Text Solution

    |

  11. Let f:[-sqrt(2)+1,sqrt(2)+1]to[(-sqrt(2)+1),2,(sqrt(2)+1)/2] be a func...

    Text Solution

    |

  12. The number of real solutions of the equation x^3+1=2\ root(3)(2x-1), i...

    Text Solution

    |

  13. If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, prove that x^2+y^2+z^2+2x y z=1.

    Text Solution

    |

  14. The sum of absolute value of all possible values of x for which cos t...

    Text Solution

    |

  15. If cot^(-1). (n)/(pi) gt (pi)/(6), n in N, then the maximum value of n...

    Text Solution

    |

  16. If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(c...

    Text Solution

    |

  17. If 1/2 sin^(-1)((3sin2theta)/(5+4cos2theta))=(pi)/4, then tan theta is...

    Text Solution

    |

  18. The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^...

    Text Solution

    |

  19. The number of solution (s) of the equation sin^-1x + cos^-1(1-x)=sin^-...

    Text Solution

    |

  20. Find the value of 3sum(n=1)^(oo) {1/(pi) sum(k=1)^(oo) cot^(-1)(1+2sqr...

    Text Solution

    |