Home
Class 12
MATHS
If f(x)={(x^(2),xle1),(1-x,xgt1):} & com...

If `f(x)={(x^(2),xle1),(1-x,xgt1):}` & composite function `h(x)=|f(x)|+f(x+2)`, then

A

`h(x)=2x^(2)+4x+4 AAxle-1`

B

`h(x)=x^(2)+x+1 AA-1ltxle1`

C

`h(x)=x^(2)-x-1 AA-1ltxle1`

D

`h(x)=-2AAxgt1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( h(x) = |f(x)| + f(x+2) \) where the function \( f(x) \) is defined piecewise as follows: \[ f(x) = \begin{cases} x^2 & \text{if } x \leq 1 \\ 1 - x & \text{if } x > 1 \end{cases} \] ### Step 1: Determine \( |f(x)| \) 1. For \( x \leq 1 \): - \( f(x) = x^2 \) - Therefore, \( |f(x)| = x^2 \) (since \( x^2 \) is always non-negative). 2. For \( x > 1 \): - \( f(x) = 1 - x \) - Since \( 1 - x \) is negative for \( x > 1 \), we have \( |f(x)| = -(1 - x) = x - 1 \). Thus, we can summarize \( |f(x)| \) as: \[ |f(x)| = \begin{cases} x^2 & \text{if } x \leq 1 \\ x - 1 & \text{if } x > 1 \end{cases} \] ### Step 2: Determine \( f(x+2) \) Next, we need to evaluate \( f(x+2) \): 1. For \( x + 2 \leq 1 \) (which implies \( x \leq -1 \)): - \( f(x+2) = (x+2)^2 \) 2. For \( x + 2 > 1 \) (which implies \( x > -1 \)): - \( f(x+2) = 1 - (x + 2) = -x - 1 \) Thus, we can summarize \( f(x+2) \) as: \[ f(x+2) = \begin{cases} (x + 2)^2 & \text{if } x \leq -1 \\ -x - 1 & \text{if } x > -1 \end{cases} \] ### Step 3: Combine \( |f(x)| \) and \( f(x+2) \) to find \( h(x) \) Now, we can express \( h(x) = |f(x)| + f(x+2) \): 1. **For \( x \leq -1 \)**: - \( h(x) = |f(x)| + f(x+2) = x^2 + (x + 2)^2 \) - Simplifying gives: \[ h(x) = x^2 + (x^2 + 4x + 4) = 2x^2 + 4x + 4 \] 2. **For \( -1 < x \leq 1 \)**: - \( h(x) = |f(x)| + f(x+2) = x^2 + (-x - 1) \) - Simplifying gives: \[ h(x) = x^2 - x - 1 \] 3. **For \( x > 1 \)**: - \( h(x) = |f(x)| + f(x+2) = (x - 1) + (-x - 1) \) - Simplifying gives: \[ h(x) = -2 \] ### Final Result Thus, the complete piecewise function for \( h(x) \) is: \[ h(x) = \begin{cases} 2x^2 + 4x + 4 & \text{if } x \leq -1 \\ x^2 - x - 1 & \text{if } -1 < x \leq 1 \\ -2 & \text{if } x > 1 \end{cases} \]

To solve the problem, we need to evaluate the function \( h(x) = |f(x)| + f(x+2) \) where the function \( f(x) \) is defined piecewise as follows: \[ f(x) = \begin{cases} x^2 & \text{if } x \leq 1 \\ 1 - x & \text{if } x > 1 \end{cases} ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(x",",0lexle1),(x+a",",xgt1):} then

If f(x)={{:(a+bx,xlt1),(4,x=1),(b-ax,xgt1):} and underset(xrarr1)f(x)=f(1) , then find the values of 'a' and 'b '

If f(x)={{:(x^(2),xle0),(x,xgt0):} and g(x)=-absx,x inR, then find fog .

Range of the function f(x)= x cos( 1/x), xgt1

Range of the function f(x)= x cos( 1/x), xgt1

If f(x)={(x^2+2,,,xge2),(1-x ,,,xlt2):} ; g(x)={(2x,,,xgt1),(3-x ,,,xle1):} then the value of lim_(x->1) f(g(x)) is

if f(x) = {{:(x+2",",xle-1),(cx^(2)",",xgt-1):}, then find c when lim(xto-1)f(x) exists.

Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt_(xto-1) f(x) exists, then c is (i) -1 (ii) 1 (iii) 2 (iv) -2

If f(x)={{:(ax^(2)+1",",xgt1),(x+a",",xle1):} is derivable at x=1 , then the value of a is

If a function f:RtoR is defined by f(x){{:(2x,xgt3),(x^(2),1lexle3),(3x,xlt1):} Then the value of f(-1)+f(2)+f(4) is

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-MCQ_TYPE
  1. Which of the following pairs of functions is NOT identical? (a) e^((l...

    Text Solution

    |

  2. If the graph of the function f(x)=(a^x-1)/(x^n(a^x+1)) is symmetrical ...

    Text Solution

    |

  3. If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(...

    Text Solution

    |

  4. Let f(x)={0 for x=0 x^2 sin (pi/x) for -1 < x < 1(x != 0), then : x |...

    Text Solution

    |

  5. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  6. If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the great...

    Text Solution

    |

  7. If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] deno...

    Text Solution

    |

  8. Identify the statement which is incorrect

    Text Solution

    |

  9. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Which of the following pairs of function are identical?

    Text Solution

    |

  12. Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2, then

    Text Solution

    |

  13. If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[co...

    Text Solution

    |

  14. If alpha satisfies the inequation x^2 - x - 2 > 0, then a value exists...

    Text Solution

    |

  15. Find the range of each of the following function: f(x)=ln(sin^(-1)x)

    Text Solution

    |

  16. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  17. The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)si...

    Text Solution

    |

  18. If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

    Text Solution

    |

  19. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  20. The sum underset(n=1) overset(infty) Sigma tan^(-1) ((4n)/( n^(4) - 2n...

    Text Solution

    |