Home
Class 12
MATHS
If f:Rto[-1,1] where f(x)=sin((pi)/2[x])...

If `f:Rto[-1,1]` where `f(x)=sin((pi)/2[x]),` (where [.] denotes the greatest integer fucntion), then

A

`f(x)` is onto

B

`f(x)` is into

C

`f(x)` is periodic

D

`f(x)` is many one

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f: \mathbb{R} \to [-1, 1] \) defined by \( f(x) = \sin\left(\frac{\pi}{2} [x]\right) \), where \( [x] \) denotes the greatest integer function (also known as the floor function). ### Step 1: Understand the Greatest Integer Function The greatest integer function \( [x] \) gives the largest integer less than or equal to \( x \). For example: - If \( x = 3.7 \), then \( [x] = 3 \). - If \( x = -2.3 \), then \( [x] = -3 \). ### Step 2: Determine the Values of \( f(x) \) The function can take on different values based on the integer part of \( x \). Since \( [x] \) can take any integer value \( n \), we can express \( f(x) \) as: \[ f(x) = \sin\left(\frac{\pi}{2} n\right) \] for \( n = [x] \). ### Step 3: Calculate \( f(x) \) for Different Integer Values We can evaluate \( f(x) \) for various integer values \( n \): - If \( n = 0 \): \( f(x) = \sin(0) = 0 \) - If \( n = 1 \): \( f(x) = \sin\left(\frac{\pi}{2}\right) = 1 \) - If \( n = 2 \): \( f(x) = \sin(\pi) = 0 \) - If \( n = 3 \): \( f(x) = \sin\left(\frac{3\pi}{2}\right) = -1 \) - If \( n = 4 \): \( f(x) = \sin(2\pi) = 0 \) ### Step 4: Identify the Range of \( f(x) \) From the calculations above, we see that the possible values of \( f(x) \) are: - \( 0 \) (from \( n = 0, 2, 4, \ldots \)) - \( 1 \) (from \( n = 1 \)) - \( -1 \) (from \( n = 3 \)) Thus, the range of \( f(x) \) is \( \{ -1, 0, 1 \} \). ### Step 5: Determine the Type of Function 1. **Onto (Surjective)**: A function is onto if every element in the codomain has a pre-image in the domain. The codomain is \( [-1, 1] \), but the range is \( \{ -1, 0, 1 \} \). Since not all values in the codomain are achieved (e.g., \( 0.5 \) is not in the range), the function is not onto. 2. **Into (Injective)**: A function is into if it does not map distinct elements in the domain to the same element in the codomain. Here, multiple values of \( x \) can yield the same \( f(x) \) (e.g., all \( x \) in the interval \( [0, 1) \) will yield \( f(x) = 0 \)). Thus, the function is not injective. 3. **Periodic**: A function is periodic if there exists a positive number \( p \) such that \( f(x + p) = f(x) \) for all \( x \). The function \( f(x) \) is periodic with period \( 2 \) because \( [x + 2] = [x] + 2 \), leading to the same sine values. 4. **Many-One**: A function is many-one if two or more different inputs can produce the same output. Since multiple values of \( x \) can yield the same \( f(x) \), the function is many-one. ### Conclusion - The function \( f(x) \) is **not onto**. - The function \( f(x) \) is **not into**. - The function \( f(x) \) is **periodic**. - The function \( f(x) \) is a **many-one function**.

To solve the problem, we need to analyze the function \( f: \mathbb{R} \to [-1, 1] \) defined by \( f(x) = \sin\left(\frac{\pi}{2} [x]\right) \), where \( [x] \) denotes the greatest integer function (also known as the floor function). ### Step 1: Understand the Greatest Integer Function The greatest integer function \( [x] \) gives the largest integer less than or equal to \( x \). For example: - If \( x = 3.7 \), then \( [x] = 3 \). - If \( x = -2.3 \), then \( [x] = -3 \). ### Step 2: Determine the Values of \( f(x) \) ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)=[tan^(-1)x] where [.] denotes the greatest integer function, is discontinous at

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-MCQ_TYPE
  1. If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(...

    Text Solution

    |

  2. Let f(x)={0 for x=0 x^2 sin (pi/x) for -1 < x < 1(x != 0), then : x |...

    Text Solution

    |

  3. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  4. If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the great...

    Text Solution

    |

  5. If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] deno...

    Text Solution

    |

  6. Identify the statement which is incorrect

    Text Solution

    |

  7. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Which of the following pairs of function are identical?

    Text Solution

    |

  10. Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2, then

    Text Solution

    |

  11. If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[co...

    Text Solution

    |

  12. If alpha satisfies the inequation x^2 - x - 2 > 0, then a value exists...

    Text Solution

    |

  13. Find the range of each of the following function: f(x)=ln(sin^(-1)x)

    Text Solution

    |

  14. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  15. The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)si...

    Text Solution

    |

  16. If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

    Text Solution

    |

  17. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  18. The sum underset(n=1) overset(infty) Sigma tan^(-1) ((4n)/( n^(4) - 2n...

    Text Solution

    |

  19. If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

    Text Solution

    |

  20. If sin^-1 x + 2 cot^-1 (y^2-2y) = 2pi, then

    Text Solution

    |