Home
Class 12
MATHS
If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]...

If `f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3)` then it is (where [.] denotes the greatest integer function)

A

odd

B

Even

C

many one and onto

D

one-one

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \frac{2x(\sin x + \tan x)}{2\left(\frac{x + 2\pi}{\pi}\right) - 3} \) and determine its properties: whether it is an even function, odd function, many-one function, or onto function. ### Step 1: Simplify the Function The function can be rewritten as: \[ f(x) = \frac{2x(\sin x + \tan x)}{2\left(\frac{x + 2\pi}{\pi}\right) - 3} \] This simplifies to: \[ f(x) = \frac{2x(\sin x + \tan x)}{\frac{2x + 4\pi}{\pi} - 3} \] \[ = \frac{2x(\sin x + \tan x)}{\frac{2x + 4\pi - 3\pi}{\pi}} = \frac{2x(\sin x + \tan x)}{\frac{2x + \pi}{\pi}} = \frac{2\pi x(\sin x + \tan x)}{2x + \pi} \] ### Step 2: Determine if the Function is Even or Odd To check if \( f(x) \) is even or odd, we need to evaluate \( f(-x) \): \[ f(-x) = \frac{2\pi(-x)(\sin(-x) + \tan(-x)}{2(-x) + \pi} \] Using the properties of sine and tangent: \[ \sin(-x) = -\sin(x), \quad \tan(-x) = -\tan(x) \] Thus, \[ f(-x) = \frac{2\pi(-x)(-\sin(x) - \tan(x))}{-2x + \pi} = \frac{2\pi x(\sin(x) + \tan(x))}{\pi - 2x} \] Now, we compare \( f(-x) \) with \( f(x) \): \[ f(-x) \neq f(x) \quad \text{and} \quad f(-x) \neq -f(x) \] This indicates that \( f(x) \) is neither even nor odd. ### Step 3: Determine if the Function is Many-One or Onto To check if \( f(x) \) is a many-one function, we need to see if there are different values of \( x \) that yield the same \( f(x) \). Since \( \sin(x) \) and \( \tan(x) \) are periodic functions, \( f(x) \) will also be periodic. Therefore, there will be multiple \( x \) values that yield the same output, confirming that \( f(x) \) is a many-one function. ### Step 4: Determine if the Function is Onto The range of \( \sin(x) \) and \( \tan(x) \) is \( \mathbb{R} \). Since \( f(x) \) is constructed from these functions, and given that it can take on all real values due to the periodic nature of sine and tangent, we can conclude that \( f(x) \) is onto. ### Conclusion Based on the analysis: - \( f(x) \) is neither even nor odd. - \( f(x) \) is a many-one function. - \( f(x) \) is onto. Thus, the final answer is that \( f(x) \) is a many-one function and onto function.

To solve the problem, we need to analyze the function \( f(x) = \frac{2x(\sin x + \tan x)}{2\left(\frac{x + 2\pi}{\pi}\right) - 3} \) and determine its properties: whether it is an even function, odd function, many-one function, or onto function. ### Step 1: Simplify the Function The function can be rewritten as: \[ f(x) = \frac{2x(\sin x + \tan x)}{2\left(\frac{x + 2\pi}{\pi}\right) - 3} \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

If f(x) = x+|x|+ cos ([ pi^(2) ]x) and g(x) =sin x, where [.] denotes the greatest integer function, then

Total number of solution for the equation x^(2)-3[sin(x-(pi)/6)]=3 is _____(where [.] denotes the greatest integer function)

The points of discontinuities of f (x)= [(6x)/(pi)]cos [(3x)/(pi)]"in" [(pi)/(6), pi] is/are:(where [.] denotes greattest integer function)

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-MCQ_TYPE
  1. If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(...

    Text Solution

    |

  2. Let f(x)={0 for x=0 x^2 sin (pi/x) for -1 < x < 1(x != 0), then : x |...

    Text Solution

    |

  3. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  4. If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the great...

    Text Solution

    |

  5. If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] deno...

    Text Solution

    |

  6. Identify the statement which is incorrect

    Text Solution

    |

  7. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Which of the following pairs of function are identical?

    Text Solution

    |

  10. Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2, then

    Text Solution

    |

  11. If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[co...

    Text Solution

    |

  12. If alpha satisfies the inequation x^2 - x - 2 > 0, then a value exists...

    Text Solution

    |

  13. Find the range of each of the following function: f(x)=ln(sin^(-1)x)

    Text Solution

    |

  14. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  15. The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)si...

    Text Solution

    |

  16. If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

    Text Solution

    |

  17. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  18. The sum underset(n=1) overset(infty) Sigma tan^(-1) ((4n)/( n^(4) - 2n...

    Text Solution

    |

  19. If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

    Text Solution

    |

  20. If sin^-1 x + 2 cot^-1 (y^2-2y) = 2pi, then

    Text Solution

    |