Home
Class 12
MATHS
The expression 1/(sqrt(2)){(sincot^(- 1)...

The expression `1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)sincot^(- 1)sqrt(2)t)}*{sqrt((1+2t^2)/(2+t^2))}`can take the value

A

`1//2`

B

`-5`

C

`1`

D

`3//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\sqrt{2}} \cdot \frac{\sin(\cot^{-1}(\cos(\tan^{-1} t)))}{\cos(\tan^{-1}(\sin(\cot^{-1}(\sqrt{2}t))))} \cdot \sqrt{\frac{1 + 2t^2}{2 + t^2}}, \] we will simplify the numerator and denominator step by step. ### Step 1: Simplifying the Numerator Let \( \tan^{-1}(t) = \alpha \). Then, we have: \[ t = \tan(\alpha). \] From the definition of tangent, we can construct a right triangle where the opposite side is \( t \) and the adjacent side is \( 1 \). The hypotenuse \( h \) can be calculated as: \[ h = \sqrt{t^2 + 1} = \sqrt{\tan^2(\alpha) + 1} = \sec(\alpha). \] Now, we can find \( \sin(\cot^{-1}(\cos(\alpha))) \). Let \( \beta = \cot^{-1}(\cos(\alpha)) \). Then, \[ \cot(\beta) = \cos(\alpha) = \frac{1}{\sec(\alpha)} = \frac{1}{h}. \] In a right triangle, if \( \cot(\beta) = \frac{\text{adjacent}}{\text{opposite}} \), we can set the adjacent side to \( 1 \) and the opposite side to \( h \). Thus, the hypotenuse \( H \) can be calculated as: \[ H = \sqrt{1^2 + h^2} = \sqrt{1 + (t^2 + 1)} = \sqrt{t^2 + 2}. \] Now, we can find \( \sin(\beta) \): \[ \sin(\beta) = \frac{h}{H} = \frac{\sqrt{t^2 + 1}}{\sqrt{t^2 + 2}}. \] ### Step 2: Simplifying the Denominator Now, consider the denominator: Let \( \cot^{-1}(\sqrt{2}t) = \theta \). Then, \[ \cot(\theta) = \sqrt{2}t. \] Using a similar triangle approach, we can find \( \sin(\theta) \): \[ \sin(\theta) = \frac{1}{\sqrt{(\sqrt{2}t)^2 + 1}} = \frac{1}{\sqrt{2t^2 + 1}}. \] Now, we need to find \( \cos(\tan^{-1}(\sin(\theta))) \). Let \( \gamma = \tan^{-1}(\sin(\theta)) \). Then, \[ \tan(\gamma) = \sin(\theta) = \frac{1}{\sqrt{2t^2 + 1}}. \] Using the triangle definition again, we find: \[ \cos(\gamma) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{2t^2 + 1}}{\sqrt{(2t^2 + 1) + 1}} = \frac{\sqrt{2t^2 + 1}}{\sqrt{2t^2 + 2}} = \frac{\sqrt{2t^2 + 1}}{\sqrt{2(t^2 + 1)}}. \] ### Step 3: Putting It All Together Now we can substitute back into our original expression: \[ \frac{1}{\sqrt{2}} \cdot \frac{\frac{\sqrt{t^2 + 1}}{\sqrt{t^2 + 2}}}{\frac{\sqrt{2t^2 + 1}}{\sqrt{2(t^2 + 1)}}} \cdot \sqrt{\frac{1 + 2t^2}{2 + t^2}}. \] This simplifies to: \[ \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{t^2 + 1} \cdot \sqrt{2(t^2 + 1)}}{\sqrt{t^2 + 2} \cdot \sqrt{2t^2 + 1}} \cdot \sqrt{\frac{1 + 2t^2}{2 + t^2}}. \] ### Step 4: Final Simplification After simplifying all terms, we can see that the expression can take values depending on \( t \). The minimum value occurs when \( t^2 + 2 \) is minimized, which is 2. Thus, the expression can take values less than 1. ### Conclusion The expression can take values in the range \( \left( \frac{1}{2}, 1 \right) \).

To solve the expression \[ \frac{1}{\sqrt{2}} \cdot \frac{\sin(\cot^{-1}(\cos(\tan^{-1} t)))}{\cos(\tan^{-1}(\sin(\cot^{-1}(\sqrt{2}t))))} \cdot \sqrt{\frac{1 + 2t^2}{2 + t^2}}, \] we will simplify the numerator and denominator step by step. ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

Prove that costan^(-1)sincot^(-1)x=sqrt((x^2+1)/(x^2+2))

(-1)/(2)int(dt)/(sqrt(1-t)sqrt(t))

(1)/(3)int sqrt(5^(2)-t^(2))dt

I=int sqrt(1-t^(2))dt

Find (dy)/(dx), when x=cos^(-1)1/(sqrt(1+t^2))"and"y=sin^(-1)1/(sqrt(1+t^2)),tR

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).

The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt , is

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s a. 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C b. 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C c. 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C d. 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-MCQ_TYPE
  1. If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(...

    Text Solution

    |

  2. Let f(x)={0 for x=0 x^2 sin (pi/x) for -1 < x < 1(x != 0), then : x |...

    Text Solution

    |

  3. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  4. If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the great...

    Text Solution

    |

  5. If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] deno...

    Text Solution

    |

  6. Identify the statement which is incorrect

    Text Solution

    |

  7. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Which of the following pairs of function are identical?

    Text Solution

    |

  10. Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2, then

    Text Solution

    |

  11. If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[co...

    Text Solution

    |

  12. If alpha satisfies the inequation x^2 - x - 2 > 0, then a value exists...

    Text Solution

    |

  13. Find the range of each of the following function: f(x)=ln(sin^(-1)x)

    Text Solution

    |

  14. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  15. The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)si...

    Text Solution

    |

  16. If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

    Text Solution

    |

  17. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  18. The sum underset(n=1) overset(infty) Sigma tan^(-1) ((4n)/( n^(4) - 2n...

    Text Solution

    |

  19. If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

    Text Solution

    |

  20. If sin^-1 x + 2 cot^-1 (y^2-2y) = 2pi, then

    Text Solution

    |