Home
Class 12
MATHS
If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+...

If `0< x< 1`,then `tan^(-1)(sqrt(1-x^2)/(1+x))` is equal to

A

`1/2cos^(-1)x`

B

`cos^(-1)sqrt((1+x)/2)`

C

`"Sin"^(-1)sqrt((1-x)/2)`

D

`1/2 sin^(-1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1}\left(\frac{\sqrt{1-x^2}}{1+x}\right) \) given that \( 0 < x < 1 \). ### Step-by-Step Solution: 1. **Set Up the Equation:** Let \( \theta = \tan^{-1}\left(\frac{\sqrt{1-x^2}}{1+x}\right) \). This implies: \[ \tan \theta = \frac{\sqrt{1-x^2}}{1+x} \] 2. **Identify the Components:** Here, we can identify the opposite side (perpendicular) as \( \sqrt{1-x^2} \) and the adjacent side (base) as \( 1+x \). 3. **Calculate the Hypotenuse:** Using the Pythagorean theorem, the hypotenuse \( h \) can be calculated as: \[ h = \sqrt{(\sqrt{1-x^2})^2 + (1+x)^2} = \sqrt{(1-x^2) + (1 + 2x + x^2)} = \sqrt{2 + 2x} \] 4. **Simplify the Hypotenuse:** Factor out the common term: \[ h = \sqrt{2(1+x)} \] 5. **Find \( \sin \theta \) and \( \cos \theta \):** - **For \( \sin \theta \):** \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{1-x^2}}{\sqrt{2(1+x)}} = \frac{\sqrt{1-x^2}}{\sqrt{2} \sqrt{1+x}} \] - **For \( \cos \theta \):** \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1+x}{\sqrt{2(1+x)}} = \frac{1+x}{\sqrt{2} \sqrt{1+x}} = \frac{\sqrt{1+x}}{\sqrt{2}} \] 6. **Express \( \theta \) in Terms of Inverse Functions:** From the sine and cosine values, we can express \( \theta \): - Using \( \sin \theta \): \[ \theta = \sin^{-1}\left(\frac{\sqrt{1-x^2}}{\sqrt{2(1+x)}}\right) \] - Using \( \cos \theta \): \[ \theta = \cos^{-1}\left(\frac{\sqrt{1+x}}{\sqrt{2}}\right) \] 7. **Final Result:** Therefore, we conclude that: \[ \tan^{-1}\left(\frac{\sqrt{1-x^2}}{1+x}\right) = \sin^{-1}\left(\frac{\sqrt{1-x^2}}{\sqrt{2(1+x)}}\right) = \cos^{-1}\left(\frac{\sqrt{1+x}}{\sqrt{2}}\right) \]

To solve the problem, we need to find the value of \( \tan^{-1}\left(\frac{\sqrt{1-x^2}}{1+x}\right) \) given that \( 0 < x < 1 \). ### Step-by-Step Solution: 1. **Set Up the Equation:** Let \( \theta = \tan^{-1}\left(\frac{\sqrt{1-x^2}}{1+x}\right) \). This implies: \[ \tan \theta = \frac{\sqrt{1-x^2}}{1+x} ...
Promotional Banner

Topper's Solved these Questions

  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise COMPREHENSION_TYPE|6 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise JEE ADVANCED|12 Videos
  • RELATION, FUNCTION & ITF

    RESONANCE ENGLISH|Exercise INTEGER_TYPE|21 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos

Similar Questions

Explore conceptually related problems

If A=[(0,0,0,0),(0,0,0,0),(1,0,0,0),(0,1,0,0)] then (A) A^2=I (B) A^2=0 (C) A^3=0 (D) none of these

If A=[(a,0,0),(0,a,0),(0,0,a)],a!=0 then | adj A| is equal to

If A=[(a, 0,0),(0,b,0),(0,0,c)] and a,b,c are non zero real numbers, then A^-1 is (A) 1/(abc) [(1,0,0),(0,1,0),(0,0,1)] (B) 1/(abc) [(a,0,0),(0,b,0),(0,c,0)] (C) 1/(abc) [(a^-1,0,0),(0,b^-1,0),(0,c^-1,1)] (D) [(a^-1,0,0),(0,b^-1,0),(0,0,c^-1)]

If P=[(x,0, 0),( 0,y,0 ),(0, 0,z)] and Q=[(a,0 ,0 ),(0,b,0 ),(0, 0,c)] , prove that P Q=[(x a,0 ,0 ),(0,y b,0),( 0 ,0,z c)]=Q P

If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1) , is

If A=[(i,0), (0,i)],\ n in N , then A^(4n) equals [(0,i), (i,0)] (b) [(0 ,0) ,(0, 0)] (c) [(1, 0) ,(0, 1)] (d) [(0,i) ,(i,0)]

If A=[(1,0,0),(0,-1,0),(0,0,2)] and B=[(2,0,0),(0, 3,0),(0,0,-1)] , find A+B , 3A+4B .

If A=[(1,0),(2,0)] and B=[(0,0),(1,12)] then= (A) AB=0, BA=0 (B) AB=0,BA!=0 (C) AB!=0,BA=0 (D) AB!=0,BA!=0

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[[x,0, 0],[ 0,y,0],[ 0, 0,z]] , is (a) [[x^(-1),0 ,0 ],[0,y^(-1),0],[ 0, 0,z^(-1)]] (b) x y z[[x^(-1),0 ,0],[ 0,y^(-1),0],[ 0, 0,z^(-1)]] (c) 1/(x y z)[[x,0, 0],[ 0,y,0],[ 0, 0,z]] (d) 1/(x y z)[[1, 0, 0],[ 0 ,1, 0],[ 0, 0, 1]]

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]

RESONANCE ENGLISH-RELATION, FUNCTION & ITF-MCQ_TYPE
  1. If f(x)={(x^(2),xle1),(1-x,xgt1):} & composite function h(x)=|f(x)|+f(...

    Text Solution

    |

  2. Let f(x)={0 for x=0 x^2 sin (pi/x) for -1 < x < 1(x != 0), then : x |...

    Text Solution

    |

  3. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  4. If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the great...

    Text Solution

    |

  5. If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] deno...

    Text Solution

    |

  6. Identify the statement which is incorrect

    Text Solution

    |

  7. If F(x)=(sinpi[x])/({x}) then F(x) is (where {.} denotes fractional pa...

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Which of the following pairs of function are identical?

    Text Solution

    |

  10. Q. if sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2, then

    Text Solution

    |

  11. If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[co...

    Text Solution

    |

  12. If alpha satisfies the inequation x^2 - x - 2 > 0, then a value exists...

    Text Solution

    |

  13. Find the range of each of the following function: f(x)=ln(sin^(-1)x)

    Text Solution

    |

  14. If the following functions are defined from [-1,1]to[-1,1], select tho...

    Text Solution

    |

  15. The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)si...

    Text Solution

    |

  16. If 0< x< 1,then tan^(-1)(sqrt(1-x^2)/(1+x)) is equal to

    Text Solution

    |

  17. If f(x) = cos^(-1)x + cos^(-1){(x)/(2)+(1)/(2)sqrt(3-3x^(2))} then :

    Text Solution

    |

  18. The sum underset(n=1) overset(infty) Sigma tan^(-1) ((4n)/( n^(4) - 2n...

    Text Solution

    |

  19. If sin^2 (2 cos^-1 (tan x)) = 1 then x may be

    Text Solution

    |

  20. If sin^-1 x + 2 cot^-1 (y^2-2y) = 2pi, then

    Text Solution

    |