Home
Class 12
PHYSICS
In an ac circuit the instantaneous value...

In an ac circuit the instantaneous values of current and applied voltage are respectively `i=2(Amp) sin (250pis^(-1)t and epsi =(10V) sin [(250pis^(-1))t+(pi)/(3)`, Find the instantaneous power drawn from the source at `t=(2)/(3)ms` and its average value.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the instantaneous power drawn from the source at \( t = \frac{2}{3} \) ms and its average value. The instantaneous power \( P(t) \) in an AC circuit is given by the product of the instantaneous voltage \( V(t) \) and the instantaneous current \( I(t) \). ### Step 1: Write down the expressions for current and voltage. The instantaneous current and voltage are given as: - \( i(t) = 2 \sin(250 \pi t) \) (in Amperes) - \( e(t) = 10 \sin\left(250 \pi t + \frac{\pi}{3}\right) \) (in Volts) ### Step 2: Substitute \( t = \frac{2}{3} \) ms into the expressions. First, convert \( t = \frac{2}{3} \) ms to seconds: \[ t = \frac{2}{3} \times 10^{-3} \text{ s} = \frac{2}{3000} \text{ s} = \frac{1}{1500} \text{ s} \] Now substitute \( t \) into the expressions for current and voltage. #### For voltage: \[ e\left(\frac{2}{3} \text{ ms}\right) = 10 \sin\left(250 \pi \left(\frac{2}{3} \times 10^{-3}\right) + \frac{\pi}{3}\right) \] Calculating \( 250 \pi \times \frac{2}{3} \times 10^{-3} \): \[ = \frac{500 \pi}{3} \times 10^{-3} \text{ radians} \] Thus: \[ e\left(\frac{2}{3} \text{ ms}\right) = 10 \sin\left(\frac{500 \pi}{3} + \frac{\pi}{3}\right) = 10 \sin\left(\frac{501 \pi}{3}\right) \] #### For current: \[ i\left(\frac{2}{3} \text{ ms}\right) = 2 \sin\left(250 \pi \left(\frac{2}{3} \times 10^{-3}\right)\right) = 2 \sin\left(\frac{500 \pi}{3}\right) \] ### Step 3: Calculate the values of voltage and current. Now we need to evaluate \( \sin\left(\frac{501 \pi}{3}\right) \) and \( \sin\left(\frac{500 \pi}{3}\right) \). Using the periodic properties of sine: \[ \frac{501 \pi}{3} = 167 \pi + \frac{2\pi}{3} \Rightarrow \sin\left(\frac{501 \pi}{3}\right) = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \] \[ \frac{500 \pi}{3} = 166 \pi + \frac{2\pi}{3} \Rightarrow \sin\left(\frac{500 \pi}{3}\right) = \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Substituting these values back: \[ e\left(\frac{2}{3} \text{ ms}\right) = 10 \cdot \frac{\sqrt{3}}{2} = 5\sqrt{3} \text{ V} \] \[ i\left(\frac{2}{3} \text{ ms}\right) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \text{ A} \] ### Step 4: Calculate the instantaneous power. Now, we can calculate the instantaneous power: \[ P(t) = e(t) \cdot i(t) = (5\sqrt{3}) \cdot (\sqrt{3}) = 15 \text{ W} \] ### Step 5: Calculate the average power. The average power \( P_{avg} \) in an AC circuit is given by: \[ P_{avg} = \frac{V_{rms} \cdot I_{rms} \cdot \cos(\phi)}{2} \] Where \( V_{rms} = \frac{V_{max}}{\sqrt{2}} \) and \( I_{rms} = \frac{I_{max}}{\sqrt{2}} \). Here, \( V_{max} = 10 \text{ V} \) and \( I_{max} = 2 \text{ A} \). The phase difference \( \phi \) can be determined from the voltage equation: \[ \phi = \frac{\pi}{3} \] Thus: \[ P_{avg} = \frac{10/\sqrt{2} \cdot 2/\sqrt{2} \cdot \cos\left(\frac{\pi}{3}\right)}{2} = \frac{10 \cdot 2 \cdot \frac{1}{2}}{2} = 5 \text{ W} \] ### Final Answers: - Instantaneous Power at \( t = \frac{2}{3} \) ms: **15 W** - Average Power: **5 W**
Promotional Banner

Topper's Solved these Questions

  • ALTERNATING CURRENT

    RESONANCE ENGLISH|Exercise SECTION C|16 Videos
  • ALTERNATING CURRENT

    RESONANCE ENGLISH|Exercise SECTION D: Resonance|10 Videos
  • ALTERNATING CURRENT

    RESONANCE ENGLISH|Exercise EXERCISE SECTION A|4 Videos
  • ATOMIC PHYSICS

    RESONANCE ENGLISH|Exercise Advanved level problems|17 Videos

Similar Questions

Explore conceptually related problems

The instantaneous values of current and voltage in an AC circuit are given by l = 6sin ( 100 pi t + pi / 4) V = 5sin ( 100 pi t - pi / 4 ), then

In a circuit, the instantaneous values of alternating current and voltages in a circuit is given by I = (1)/(sqrt2) sin (100 pi t) A and E = (1)/(sqrt2) sin (100 pi t + (pi)/(3)) V . The average power in watts consumed in the circui is

In an AC circuit the instantaneous values of emf and current are e=200sin300t volt and i=2sin(300t+(pi)/(3)) amp The average power consumed (in watts) is

The instantaneous current and volatage of an AC circuit are given by i = 10 sin (314 t) A and V = 100 sin (314 t) V What is the power dissipation in the circuit?

If V=100sin (100t)V and I =100sin (100t+(pi)/(3)) mA are the instantaneous values of voltage and current, respectively

In an AC circuit, the instantaneous values of e.m.f and current are e=200sin314t volt and i=sin(314t+(pi)/3) ampere. The average power consumed in watt is

In an AC circuit, the instantaneous values of e.m.f and current are e=200sin314t volt and i=sin(314t+(pi)/3) ampere. The average power consumed in watt is

The instantaneous current and voltage of an a.c. circuit are given by i=10 sin 3000 t A and v=200 sin 300 t V. What is the power dissipation in the circuit?

Voltage and current in an ac circuit are given by V=5 sin (100 pi t-pi/6) and I=4 sin (100 pi t+pi/6)

In an a.c. circuit, the instantaneous e.m.f. and current are given by e = 100 sin 30 t i = 20 sin( 30t-(pi)/(4)) In one cycle of a.c., the average power consumed by the circuit and the wattless current are, respectively :