Home
Class 12
PHYSICS
If vec(E)=2x^(2) hat(i)-3y^(2) hat(j), t...

If `vec(E)=2x^(2) hat(i)-3y^(2) hat(j)`, then V (x, y, z)

Text Solution

AI Generated Solution

The correct Answer is:
To find the electric potential \( V(x, y, z) \) from the given electric field \( \vec{E} = 2x^2 \hat{i} - 3y^2 \hat{j} \), we can follow these steps: ### Step 1: Understand the relationship between electric field and potential The electric field \( \vec{E} \) is related to the electric potential \( V \) by the equation: \[ \vec{E} = -\nabla V \] This means that the electric field is the negative gradient of the potential. ### Step 2: Write the expression for the differential displacement vector The differential displacement vector \( d\vec{r} \) can be expressed as: \[ d\vec{r} = dx \hat{i} + dy \hat{j} \] ### Step 3: Set up the integral for potential The potential difference \( V \) can be expressed as: \[ V = -\int \vec{E} \cdot d\vec{r} \] Substituting the expression for \( \vec{E} \) and \( d\vec{r} \): \[ V = -\int (2x^2 \hat{i} - 3y^2 \hat{j}) \cdot (dx \hat{i} + dy \hat{j}) \] ### Step 4: Calculate the dot product Calculating the dot product: \[ \vec{E} \cdot d\vec{r} = 2x^2 dx - 3y^2 dy \] Thus, we can rewrite the integral: \[ V = -\int (2x^2 dx - 3y^2 dy) \] ### Step 5: Separate the integrals We can separate the integrals: \[ V = -\left( \int 2x^2 dx - \int 3y^2 dy \right) \] ### Step 6: Perform the integrations Now, we perform the integrations: 1. For the first integral: \[ \int 2x^2 dx = \frac{2}{3} x^3 \] 2. For the second integral: \[ \int 3y^2 dy = y^3 \] ### Step 7: Combine the results Combining the results from the integrations: \[ V = -\left( \frac{2}{3} x^3 - y^3 \right) + C \] Where \( C \) is the constant of integration. ### Step 8: Write the final expression for potential Thus, the potential \( V(x, y, z) \) is: \[ V(x, y, z) = -\frac{2}{3} x^3 + y^3 + C \] ### Final Result \[ V(x, y, z) = -\frac{2}{3} x^3 + y^3 + C \] ---
Promotional Banner

Topper's Solved these Questions

  • ELECTROSTATICS

    RESONANCE ENGLISH|Exercise Exercise-1 Section (H)|5 Videos
  • ELECTROSTATICS

    RESONANCE ENGLISH|Exercise Exercise-1 Section (I)|5 Videos
  • ELECTROSTATICS

    RESONANCE ENGLISH|Exercise Exercise-1 Section (F)|4 Videos
  • ELECTROMAGNETIC INDUCTION

    RESONANCE ENGLISH|Exercise A.l.P|19 Videos
  • EXPERIMENTAL PHYSICS

    RESONANCE ENGLISH|Exercise PART -II|10 Videos

Similar Questions

Explore conceptually related problems

If vec(E)=2y hat(i)+2x hat(j) , then find V (x, y, z)

For given vec(E)=2x hat(i)+3yhat(j) , find the potential at (x, y) if V at origin is 5 volts.

Find the potential function V (x,y) of an electrostatic field vec(E)=2axy hat(i)+a(x^(2)-y^(2))hat(j) where a is a constant.

Electric dipole of moment vec(P)=P hat(i) is kept at a point (x, y) in an electric field vec(E )=4x y^(2)hat(i)+4x^(2)y hat(j) . Find the magnitude of force acting on the dipole.

Obtain the condition for the two vectors vec(A) = x_(1) hat(i) + y_(1)hat(j) + z_(1) hat(k) and vec(B) = x_(2) hat(i) = x_(2) hat(i) + y_(2) hat(j) + z_(2) hat(k) to be parallel ?

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(A) = 4hat(i) - 2hat(j) + 6hat(k) and B = hat(i) - 2hat(j) - 3hat(k) the angle which the vec(A) vec(B) makes with x-axis is :

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find V_(ab) in an electric field vec(E)=(2hat(i)+3hat(j)+4hat(k))N//C where vec(r)_(a)=(hat(i)-2hat(j)+hat(k))mandvec(r_(b))=(2hat(i)+hat(j)-2hat(k))m

The displacement of a charge Q in the electric field vec(E) = e_(1)hat(i) + e_(2)hat(j) + e_(3) hat(k) is vec(r) = a hat(i) + b hat(j) . The work done is