Home
Class 12
MATHS
Show that thematrix A=[{:(,2,3),(,1,2):}...

Show that thematrix A=`[{:(,2,3),(,1,2):}]` satisfies the equations `A^(2)-4A+I=0` where I is `2 xx 2` identity matrix and O is `2 xx 2` zero matrix. Using the equations. Find `A^(-1)`.

Text Solution

AI Generated Solution

To show that the matrix \( A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \) satisfies the equation \( A^2 - 4A + I = 0 \), where \( I \) is the \( 2 \times 2 \) identity matrix, and to find \( A^{-1} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-1|9 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Show that the matrix A=[(2, 3), (1, 2)] satisfies the equation A^3-4A^2+A=O .

Show that the matrix A=[2 3 1 2] satisfies the equation A^2-4A+I=0

If A[{:(2,3),(1,2):}] satisfy the equation A^2-kA+I=0 , then find k also A^(-1) .

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=0 and hence find A^(-1)

A=[{:(1,3),(2,1):}] satisfy the equation A^2-kA-5I=0 , then find k and also A^(-1) .

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

Show that A=[(-8, 5),( 2, 4)] satisfies the equation A^2+4A-42 I=O . Hence, find A^(-1) .

Show that the matrix A=[[1 ,2, 2],[ 2, 1, 2],[ 2, 2, 1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1) .

If M=[{:(,4,1),(,-1,2):}] show that 6M-M^2=9I , where I is a 2 xx 2 unit matrix.

Show that the matrix, A=[[1, 0,-2],[-2,-1, 2],[ 3, 4, 1]] satisfies the equation, A^3-A^2-3A-I_3=O . Hence, find A^(-1) .

RESONANCE ENGLISH-MATRICES & DETERMINANT-HLP
  1. Show that thematrix A=[{:(,2,3),(,1,2):}] satisfies the equations A^(2...

    Text Solution

    |

  2. If a^2+b^2+c^2=1, then prove that |[a^2 +(b^2+c^2)cosθ, ab(1−cosθ), ...

    Text Solution

    |

  3. Prove that |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(...

    Text Solution

    |

  4. If a x1 2+b y1 2+c z1 2=a x2 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d ,a...

    Text Solution

    |

  5. if (x(1)-x(2))^(2)+(y(1)-y(2))^(2)=a^(2), (x(2)-x(3))^(2)+(y(2)-y(3))^...

    Text Solution

    |

  6. Let A=[{:(,cos^(-1)x, cos^(-1)y,cos^(-1)z),(,cos^(-1)y, cos^(-1)z,cos^...

    Text Solution

    |

  7. If y=(u)/(v), where u and v are functions of x, show that v^(3)(d^(2...

    Text Solution

    |

  8. If alpha, beta are the roots of the equation ax^(2)+bx+c=0 and S(n)=al...

    Text Solution

    |

  9. Let a >0,d >-0. Find the value of the determinant |1/a1/(a(a+d))1/((a+...

    Text Solution

    |

  10. Let overset(to)(a(r))=x(r )hat(i)+y(r )hat(j)+z(r )hat(k),r=1,2,3 thre...

    Text Solution

    |

  11. If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3)...

    Text Solution

    |

  12. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  15. If f(x)=log(10)x and g(x)=e^(ln x) and h(x)=f [g(x)], then find the va...

    Text Solution

    |

  16. If a,b,c are real number, and D=|{:(,a,1+2i,3-5i),(,1-2i,b,-7-3i),(,3+...

    Text Solution

    |

  17. If A=[{:(,1,a),(,0,1):}] then find lim(n-oo) (1)/(n)A^(n)

    Text Solution

    |

  18. "Let" P=[{:(,"cos"(pi)/(9),"sin"(pi)/(9)),(,-"sin"(pi)/(9),"cos"(pi)/(...

    Text Solution

    |

  19. Let A=[{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B=[{:(,2,-1,-1),(,-1,2,-1),(,...

    Text Solution

    |

  20. Let A be a (4xx4) matrix such that the sum of elements in each row is ...

    Text Solution

    |

  21. Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}]then prove ...

    Text Solution

    |