Home
Class 12
MATHS
Obtain the inverse of the matrix A=[{:(2...

Obtain the inverse of the matrix `A=[{:(2,3),(1,1):}]` using elementary operations.

Text Solution

AI Generated Solution

To find the inverse of the matrix \( A = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} \) using elementary operations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations to transform \( A \) into \( I \). The augmented matrix will look like this: \[ \begin{pmatrix} 2 & 3 & | & 1 & 0 \\ 1 & 1 & | & 0 & 1 \end{pmatrix} \] ### Step 1: Make the leading coefficient of the first row equal to 1 To do this, we can divide the first row by 2: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-1|9 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise SECTION-B|18 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Find the inverse of the matrix A= [(3,1),(4,2)]

The inverse of the matrix {:[(1,3),(3,10)]:} is equal to

find the invese of the matraix [(1,2,5),(2,3,1),(-1,1,1)], using elementary row operaations.

find the inverse of matrix A=[{:(4,7),(3,5):}] by using elementary column transformation .

Obtain the inverse of the following matrix, using elementary operations: A=[(3,0,-1),(2,3,0),(0,4,1)]

Obtain the inverse of the following matrix, using elementary operations: A=[(3,0,-1),(2,3,0),(0,4,1)]

Obtain the inverse of the following matrix using elementary operations A=[[0, 1, 2],[ 1, 2, 3],[ 3, 1, 1]] .

Find the inverse of Matrix A=[{:(1,3,-2),(-3,0,-5),(2,5,0):}] by using elementary row transformation.

Find the inverse of the matrix A = {:((1,2,-2),(-1,3,0),(0,-2,1)):} by using elementary row transformations.

Find the inverse of the matrix |[2,-1], [3, 4]| .

RESONANCE ENGLISH-MATRICES & DETERMINANT-HLP
  1. Obtain the inverse of the matrix A=[{:(2,3),(1,1):}] using elementary ...

    Text Solution

    |

  2. If a^2+b^2+c^2=1, then prove that |[a^2 +(b^2+c^2)cosθ, ab(1−cosθ), ...

    Text Solution

    |

  3. Prove that |(a-x)^2(a-y)^2(a-z)^2(b-x)^2(b-y)^2(b-z)^2(c-x)^2(c-y)^2(...

    Text Solution

    |

  4. If a x1 2+b y1 2+c z1 2=a x2 2+b y2 2+c z2 2=a x3 2+b y3 2+c z3 2=d ,a...

    Text Solution

    |

  5. if (x(1)-x(2))^(2)+(y(1)-y(2))^(2)=a^(2), (x(2)-x(3))^(2)+(y(2)-y(3))^...

    Text Solution

    |

  6. Let A=[{:(,cos^(-1)x, cos^(-1)y,cos^(-1)z),(,cos^(-1)y, cos^(-1)z,cos^...

    Text Solution

    |

  7. If y=(u)/(v), where u and v are functions of x, show that v^(3)(d^(2...

    Text Solution

    |

  8. If alpha, beta are the roots of the equation ax^(2)+bx+c=0 and S(n)=al...

    Text Solution

    |

  9. Let a >0,d >-0. Find the value of the determinant |1/a1/(a(a+d))1/((a+...

    Text Solution

    |

  10. Let overset(to)(a(r))=x(r )hat(i)+y(r )hat(j)+z(r )hat(k),r=1,2,3 thre...

    Text Solution

    |

  11. If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3)...

    Text Solution

    |

  12. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  15. If f(x)=log(10)x and g(x)=e^(ln x) and h(x)=f [g(x)], then find the va...

    Text Solution

    |

  16. If a,b,c are real number, and D=|{:(,a,1+2i,3-5i),(,1-2i,b,-7-3i),(,3+...

    Text Solution

    |

  17. If A=[{:(,1,a),(,0,1):}] then find lim(n-oo) (1)/(n)A^(n)

    Text Solution

    |

  18. "Let" P=[{:(,"cos"(pi)/(9),"sin"(pi)/(9)),(,-"sin"(pi)/(9),"cos"(pi)/(...

    Text Solution

    |

  19. Let A=[{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B=[{:(,2,-1,-1),(,-1,2,-1),(,...

    Text Solution

    |

  20. Let A be a (4xx4) matrix such that the sum of elements in each row is ...

    Text Solution

    |

  21. Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}]then prove ...

    Text Solution

    |