Home
Class 12
MATHS
Let overset(to)(a(r))=x(r )hat(i)+y(r )h...

Let `overset(to)(a_(r))=x_(r )hat(i)+y_(r )hat(j)+z_(r )hat(k),r=1,2,3` three mutually prependicular unit vectors then the value of `|{:(x_(1),,x_(2),,x_(3)),(y_(1),,y_(2) ,,y_(3)),(z_(1),,z_(2),,z_(3)):}|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant given by: \[ \Delta = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] where \( \overset{\to}{a_r} = x_r \hat{i} + y_r \hat{j} + z_r \hat{k} \) for \( r = 1, 2, 3 \) represents three mutually perpendicular unit vectors. ### Step 1: Write the Determinant We start by writing the determinant explicitly: \[ \Delta = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] ### Step 2: Square the Determinant Next, we will find \( \Delta^2 \): \[ \Delta^2 = \Delta \cdot \Delta = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \cdot \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] ### Step 3: Expand the Determinant Using the property of determinants, we can expand this determinant: \[ \Delta^2 = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \cdot \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \] This results in a matrix where each element is a sum of products of the components of the vectors. ### Step 4: Identify Orthogonality Since the vectors are mutually perpendicular unit vectors, we have: - \( x_1^2 + y_1^2 + z_1^2 = 1 \) - \( x_2^2 + y_2^2 + z_2^2 = 1 \) - \( x_3^2 + y_3^2 + z_3^2 = 1 \) And the dot products between different vectors are zero: - \( x_1x_2 + y_1y_2 + z_1z_2 = 0 \) - \( x_1x_3 + y_1y_3 + z_1z_3 = 0 \) - \( x_2x_3 + y_2y_3 + z_2z_3 = 0 \) ### Step 5: Form the Resultant Matrix Thus, the determinant simplifies to: \[ \Delta^2 = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \] ### Step 6: Conclusion Taking the square root gives us: \[ \Delta = \pm 1 \] Thus, the value of the determinant \( |{(x_1, x_2, x_3), (y_1, y_2, y_3), (z_1, z_2, z_3)}| \) is equal to \( 1 \). ### Final Answer \[ \text{The value of the determinant is } 1. \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II:|28 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Let vec a_r=x_r hat i+y_r hat j+z_r hat k ,r=1,2,3 be three mutually perpendicular unit vectors, then the value of |[x_1,x_2,x_3],[y_1,y_2,y_3],[z_1,z_2,z_3]| is equal to a. 0 b. +-1 c. +-2 d. none of these

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(b) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(c) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(a ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(b) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|^2 is equal to

|{:(.^(x)C_(r),,.^(x)C_(r+1),,.^(x)C_(r+2)),(.^(y)C_(r),,.^(y)C_(r+1),,.^(y)C_(r+2)),(.^(z)C_(r),,.^(z)C_(r+1),,.^(z)C_(r+2)):}| is equal to

If vec(E)=2x^(2) hat(i)-3y^(2) hat(j) , then V (x, y, z)

If the vectors hat(i) - 2x hat(j) + 3 y hat(k) and hat(i) +2x hat(j) - y hat(k) are perpendicular, then the locus of (x,y) is

(r*hat(i))^(2)+(r*hat(j))^(2)+(r*hat(k))^(2) is equal to

If vec a=x hat i+2 hat j-\ z hat k and vec b=3 hat i-\ y hat j+ hat k are two equal vectors, then write the value of x+y+zdot

If vec a=x hat i+2 hat j-z hat k\ and vec b=3 hat i-y hat j+ hat k are two equal vectors, then write the value of x+y+zdot

If the planes overset(to)( r) (2 hat(i) - lambda (j) + 3 hat(k) ) = 0 and overset(to)( r) ( lambda (i) + 5 hat(j) - hat(k) )=5 are perpendicular to each other, then the value of lambda is

Let a=xhati+12hatj-hatk,b=2hati+2xhatj+hatk and c=hati+hatk . If b,c,a in that order form a left handed system, then find the value of x. [x_(1)a+y_(1)b+z_(1)c,x_(2)a+y_(2)b+z_(2)c,x_(3)a+y_(3)b+z_(3)c] =|(x_(1),y_(1),z_(1)),(x_(2),y_(2),z_(2)),(x_(3),y_(3),z_(3))|[abc] .

RESONANCE ENGLISH-MATRICES & DETERMINANT-HLP
  1. If alpha, beta are the roots of the equation ax^(2)+bx+c=0 and S(n)=al...

    Text Solution

    |

  2. Let a >0,d >-0. Find the value of the determinant |1/a1/(a(a+d))1/((a+...

    Text Solution

    |

  3. Let overset(to)(a(r))=x(r )hat(i)+y(r )hat(j)+z(r )hat(k),r=1,2,3 thre...

    Text Solution

    |

  4. If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3)...

    Text Solution

    |

  5. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  8. If f(x)=log(10)x and g(x)=e^(ln x) and h(x)=f [g(x)], then find the va...

    Text Solution

    |

  9. If a,b,c are real number, and D=|{:(,a,1+2i,3-5i),(,1-2i,b,-7-3i),(,3+...

    Text Solution

    |

  10. If A=[{:(,1,a),(,0,1):}] then find lim(n-oo) (1)/(n)A^(n)

    Text Solution

    |

  11. "Let" P=[{:(,"cos"(pi)/(9),"sin"(pi)/(9)),(,-"sin"(pi)/(9),"cos"(pi)/(...

    Text Solution

    |

  12. Let A=[{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B=[{:(,2,-1,-1),(,-1,2,-1),(,...

    Text Solution

    |

  13. Let A be a (4xx4) matrix such that the sum of elements in each row is ...

    Text Solution

    |

  14. Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}]then prove ...

    Text Solution

    |

  15. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  16. Let p and q be real number such that x^(2)+px+q ne0 for every real num...

    Text Solution

    |

  17. Let A,B,C be three 3 xx 3 matrices with real enteries. If BA+BC+AC=1, ...

    Text Solution

    |

  18. If |z(1)|=|z(2)|=1, then prove that [{:(,z(1),-z(2)),(,bar(z)(2),bar(z...

    Text Solution

    |

  19. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  20. about to only mathematics

    Text Solution

    |