Home
Class 12
MATHS
If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),...

If `|(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3))|=(x-y)(y-z)(z-x){1/x+1/y+1/z}` then `k=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant and simplify it according to the given condition. Let's break it down step by step. ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} x^k & x^{k+2} & x^{k+3} \\ y^k & y^{k+2} & y^{k+3} \\ z^k & z^{k+2} & z^{k+3} \end{vmatrix} \] ### Step 2: Factor Out Common Terms We can factor out \(x^k\), \(y^k\), and \(z^k\) from each row: \[ D = x^k y^k z^k \begin{vmatrix} 1 & x^2 & x^3 \\ 1 & y^2 & y^3 \\ 1 & z^2 & z^3 \end{vmatrix} \] ### Step 3: Simplify the Determinant Now we simplify the determinant: \[ D = x^k y^k z^k \begin{vmatrix} 1 & x^2 & x^3 \\ 1 & y^2 & y^3 \\ 1 & z^2 & z^3 \end{vmatrix} \] We can perform row operations to simplify this determinant. Subtract the first row from the second and third rows: \[ D = x^k y^k z^k \begin{vmatrix} 1 & x^2 & x^3 \\ 0 & y^2 - x^2 & y^3 - x^3 \\ 0 & z^2 - x^2 & z^3 - x^3 \end{vmatrix} \] ### Step 4: Factor Differences of Powers Using the identities \(a^2 - b^2 = (a-b)(a+b)\) and \(a^3 - b^3 = (a-b)(a^2 + ab + b^2)\): \[ D = x^k y^k z^k \begin{vmatrix} 1 & x^2 & x^3 \\ 0 & (y-x)(y+x) & (y-x)(y^2 + xy + x^2) \\ 0 & (z-x)(z+x) & (z-x)(z^2 + zx + x^2) \end{vmatrix} \] ### Step 5: Factor Out Common Terms Now we can factor out \((y-x)\) and \((z-x)\): \[ D = x^k y^k z^k (y-x)(z-x) \begin{vmatrix} 1 & x^2 & x^3 \\ 0 & y+x & y^2 + xy + x^2 \\ 0 & z+x & z^2 + zx + x^2 \end{vmatrix} \] ### Step 6: Evaluate the Remaining Determinant The remaining determinant can be evaluated: \[ D = x^k y^k z^k (y-x)(z-x) \cdot \text{(some expression)} \] ### Step 7: Compare with Given Expression According to the problem, we have: \[ D = (x-y)(y-z)(z-x) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \] ### Step 8: Equate and Solve for \(k\) Comparing both sides, we find: \[ xyz^{k} \text{(some expression)} = (x-y)(y-z)(z-x) \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) \] From the comparison, we can deduce: \[ k = -1 \] ### Final Answer Thus, the value of \(k\) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II:|28 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Let x gt 0 , y gt 0 , z gt 0 are respectively the 2^(nd) , 3^(rd) , 4^(th) terms of a G.P. and Delta=|{:(x^(k),x^(k+1),x^(k+2)),(y^(k),y^(k+1),y^(k+2)),(z^(k),z^(k+1),z^(k+2)):}|=(r-1)^(2)(1-(1)/(r^(2))) (where r is the common ratio), then

If |(x+y,y+z,z+x),(y+z, z+x,x+y),(z+x,x+y,y+z)| =k |(x,z,y),(y,x,z),(z,y,x)| , then k is equal to

If the lines (x)/(1)=(y)/(2)=(z)/(3), (x-k)/(3)=(y-3)/(-1)=(z-4)/(h) and (2x+1)/(3)=(y-1)/(1)=(z-2)/(1) are concurrent, then the value of 2h-3k is equal to

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If the straight lines (x-1)/(k)=(y-2)/(2)=(z-3)/(3) and (x-2)/(3)=(y-3)/(k)=(z-1)/(2) intersect at a point, then the integer k is equal to

If the line (x-1)/(-3) = (y-2)/(2k) = (z-3)/( 2) and (x-1)/( 3k) = (y-5)/(1) = (6-z)/(5) are mutually perpendicular, then k is equal to

If X+Y=[(5,2),(0,9)] and X-Y=[(3, 6), (0,-1)] and X=[(k,k),(0,k)] , then k =

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)a n d(x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angel, then find the value of kdot

If the line (x-1)/(2)=(y+1)/(3)=(z-1)/(4) and (x-3)/(1)=(y-k)/(2)=(z)/(1) intersect, then k is equal to

RESONANCE ENGLISH-MATRICES & DETERMINANT-HLP
  1. Let a >0,d >-0. Find the value of the determinant |1/a1/(a(a+d))1/((a+...

    Text Solution

    |

  2. Let overset(to)(a(r))=x(r )hat(i)+y(r )hat(j)+z(r )hat(k),r=1,2,3 thre...

    Text Solution

    |

  3. If |(x^k,x^(k+2),x^(k+3)), (y^k,y^(k+2),y^(k+3)), (z^k,z^(k+2),z^(k+3)...

    Text Solution

    |

  4. If the determinant |(x+a,p+u,l+f),(y+b,q+v,m+g),(z+c,r+w,n+h)| splits ...

    Text Solution

    |

  5. about to only mathematics

    Text Solution

    |

  6. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  7. If f(x)=log(10)x and g(x)=e^(ln x) and h(x)=f [g(x)], then find the va...

    Text Solution

    |

  8. If a,b,c are real number, and D=|{:(,a,1+2i,3-5i),(,1-2i,b,-7-3i),(,3+...

    Text Solution

    |

  9. If A=[{:(,1,a),(,0,1):}] then find lim(n-oo) (1)/(n)A^(n)

    Text Solution

    |

  10. "Let" P=[{:(,"cos"(pi)/(9),"sin"(pi)/(9)),(,-"sin"(pi)/(9),"cos"(pi)/(...

    Text Solution

    |

  11. Let A=[{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B=[{:(,2,-1,-1),(,-1,2,-1),(,...

    Text Solution

    |

  12. Let A be a (4xx4) matrix such that the sum of elements in each row is ...

    Text Solution

    |

  13. Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}]then prove ...

    Text Solution

    |

  14. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  15. Let p and q be real number such that x^(2)+px+q ne0 for every real num...

    Text Solution

    |

  16. Let A,B,C be three 3 xx 3 matrices with real enteries. If BA+BC+AC=1, ...

    Text Solution

    |

  17. If |z(1)|=|z(2)|=1, then prove that [{:(,z(1),-z(2)),(,bar(z)(2),bar(z...

    Text Solution

    |

  18. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If the system of equations x=cy+bz, y=az+cx and z=bx+ay has non-trivia...

    Text Solution

    |