Home
Class 12
MATHS
If A=[{:(,1,a),(,0,1):}] then find lim(n...

If `A=[{:(,1,a),(,0,1):}]` then find `lim_(n-oo) (1)/(n)A^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{n \to \infty} \frac{1}{n} A^n \] where \( A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \] Using matrix multiplication: \[ A^2 = \begin{pmatrix} 1 \cdot 1 + a \cdot 0 & 1 \cdot a + a \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot a + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \] Using matrix multiplication: \[ A^3 = \begin{pmatrix} 1 \cdot 1 + 2a \cdot 0 & 1 \cdot a + 2a \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 & 0 \cdot a + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 3a \\ 0 & 1 \end{pmatrix} \] ### Step 3: Generalize \( A^n \) From the calculations of \( A^2 \) and \( A^3 \), we can see a pattern emerging. We can generalize this to: \[ A^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix} \] ### Step 4: Substitute \( A^n \) into the limit expression Now, substituting \( A^n \) into the limit expression: \[ \frac{1}{n} A^n = \frac{1}{n} \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{n} & a \\ 0 & \frac{1}{n} \end{pmatrix} \] ### Step 5: Take the limit as \( n \to \infty \) Now, we take the limit as \( n \to \infty \): \[ \lim_{n \to \infty} \begin{pmatrix} \frac{1}{n} & a \\ 0 & \frac{1}{n} \end{pmatrix} = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \] ### Final Result Thus, the final result is: \[ \lim_{n \to \infty} \frac{1}{n} A^n = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-II:|28 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

The value of lim_(n->oo) n^(1/n)

lim_(n->oo)2^(n-1)sin(a/2^n)

lim_(n rarr oo)2^(1/n)

Prove that lim_(n->oo)(1+1/n)^n=e

lim_(n to oo)(n!)/((n+1)!-n!)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

lim_(x->oo)(1-x+x.e^(1/n))^n

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

RESONANCE ENGLISH-MATRICES & DETERMINANT-HLP
  1. If f(x)=log(10)x and g(x)=e^(ln x) and h(x)=f [g(x)], then find the va...

    Text Solution

    |

  2. If a,b,c are real number, and D=|{:(,a,1+2i,3-5i),(,1-2i,b,-7-3i),(,3+...

    Text Solution

    |

  3. If A=[{:(,1,a),(,0,1):}] then find lim(n-oo) (1)/(n)A^(n)

    Text Solution

    |

  4. "Let" P=[{:(,"cos"(pi)/(9),"sin"(pi)/(9)),(,-"sin"(pi)/(9),"cos"(pi)/(...

    Text Solution

    |

  5. Let A=[{:(,1,1,1),(,1,1,1),(,1,1,1):}] , B=[{:(,2,-1,-1),(,-1,2,-1),(,...

    Text Solution

    |

  6. Let A be a (4xx4) matrix such that the sum of elements in each row is ...

    Text Solution

    |

  7. Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}]then prove ...

    Text Solution

    |

  8. Let A be a nxxn matrix such thatA ^(n) = alpha A, where alpha is a ...

    Text Solution

    |

  9. Let p and q be real number such that x^(2)+px+q ne0 for every real num...

    Text Solution

    |

  10. Let A,B,C be three 3 xx 3 matrices with real enteries. If BA+BC+AC=1, ...

    Text Solution

    |

  11. If |z(1)|=|z(2)|=1, then prove that [{:(,z(1),-z(2)),(,bar(z)(2),bar(z...

    Text Solution

    |

  12. If A and B are two square matrices such that B=-A^(-1)BA, then (A+B)^(...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If the system of equations x=cy+bz, y=az+cx and z=bx+ay has non-trivia...

    Text Solution

    |

  15. IfD=d i ag[d1, d2, dn] , then prove that f(D)=d i ag[f(d1),f(d2), ,f(...

    Text Solution

    |

  16. Fiven the matrix A= [[-1,3,5],[1,-3,-5],[-1,3,5]] and X be the solut...

    Text Solution

    |

  17. If q is a characteristic root of an singular matrix A, then prove that...

    Text Solution

    |

  18. Show that if lambda(1), lambda(2), ...., lambda(n) are n eigenvalues o...

    Text Solution

    |

  19. If there an three square matrices A, B, C of same order satisying th...

    Text Solution

    |

  20. If A is a nonsingular matrix satisfying AB-BA=A, then prove that det. ...

    Text Solution

    |