Home
Class 12
CHEMISTRY
.72Re^162 to.(z1)X^(A1)+ alpha particle ...

`._72Re^162 to._(z_1)X^(A_1)+` alpha particle
`._74W^(188)to._(Z_2)Y^(A_2)`+Beta particle
value of `(A_2-A_1)/(Z_2-Z_1)` is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the two nuclear reactions given and extract the values of \(A_1\), \(A_2\), \(Z_1\), and \(Z_2\). ### Step 1: Analyze the first reaction The first reaction is: \[ ^{162}_{72}Re \rightarrow ^{A_1}_{Z_1}X + \text{alpha particle} \] An alpha particle has a mass number of 4 and an atomic number of 2. Therefore, we can write: \[ ^{162}_{72}Re \rightarrow ^{A_1}_{Z_1}X + ^{4}_{2}He \] ### Step 2: Calculate \(Z_1\) and \(A_1\) Using the conservation of atomic number and mass number: 1. **For mass number (A)**: \[ 162 = A_1 + 4 \implies A_1 = 162 - 4 = 158 \] 2. **For atomic number (Z)**: \[ 72 = Z_1 + 2 \implies Z_1 = 72 - 2 = 70 \] So, we have: - \(A_1 = 158\) - \(Z_1 = 70\) ### Step 3: Analyze the second reaction The second reaction is: \[ ^{188}_{74}W \rightarrow ^{A_2}_{Z_2}Y + \text{beta particle} \] A beta particle (electron) has a mass number of 0 and an atomic number of -1. Therefore, we can write: \[ ^{188}_{74}W \rightarrow ^{A_2}_{Z_2}Y + ^{0}_{-1}e \] ### Step 4: Calculate \(Z_2\) and \(A_2\) Using the conservation of atomic number and mass number: 1. **For mass number (A)**: \[ 188 = A_2 + 0 \implies A_2 = 188 \] 2. **For atomic number (Z)**: \[ 74 = Z_2 - 1 \implies Z_2 = 74 + 1 = 75 \] So, we have: - \(A_2 = 188\) - \(Z_2 = 75\) ### Step 5: Calculate the ratio \((A_2 - A_1) / (Z_2 - Z_1)\) Now we can substitute the values into the ratio: \[ \frac{A_2 - A_1}{Z_2 - Z_1} = \frac{188 - 158}{75 - 70} \] Calculating the numerator and denominator: - Numerator: \(188 - 158 = 30\) - Denominator: \(75 - 70 = 5\) Thus, the ratio is: \[ \frac{30}{5} = 6 \] ### Final Answer The value of \(\frac{A_2 - A_1}{Z_2 - Z_1}\) is \(6\). ---
Promotional Banner

Topper's Solved these Questions

  • D BLOCK ELEMENTS

    RESONANCE ENGLISH|Exercise EXERCISE-3 PART-III|37 Videos
  • ELECTRO CHEMISTRY

    RESONANCE ENGLISH|Exercise PHYSICAL CHEMITRY (ELECTROCHEMISTRY)|53 Videos

Similar Questions

Explore conceptually related problems

If a_i > 0 for i=1,2,…., n and a_1 a_2 … a_(n=1) , then minimum value of (1+a_1) (1+a_2) ….. (1+a_n) is :

If A_1 and A_2 are two AMs between a and b then (2A_1 -A_2) (2A_2 - A_1) =

The length of projection of the segment join (x_1,y_1,z_1) and (x_2,y_2,z_20 on te line (x-alpha)/l=(y-beta)/m=(z-gamma)/n is (A) |l(x_2-x_1)+m(y_2-y_1)+n(z_2-z_1) (B) |alpha(x_2-x_1)+beta(y_2-y_1)+gamma(z_2-z_1)| (C) |(x_2-x_1)/l+(y_2-y_1)/m+(z_2-z_1)/n| (D) none of these

Let a_1, a_2, a_3, ,a_(11) be real numbers satisfying a_1=15 , 27-2a_2>0 a n da_k=2a_(k-1)-a_(k-2) for k=3,4, , 11. If (a1 2+a2 2+...+a 11 2)/(11)=90 , then the value of (a1+a2++a 11)/(11) is equals to _______.

The capacitance of the capacitors of plate areas A_1 and A_2(A_1 lt A_2) at a distance d is

If a_n>1 for all n in N then log_(a_2) a_1+log_(a_3) a_2+.....log_(a_1)a_n has the minimum value of

If A_1 and A_2 are two A.M.s between a and b and G_1 and G_2 are two G.M.s between the same numbers then what is the value of (A_1+A_2)/(G_1G_2)

If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is (a_1-a_2)x+(b_1-b_2)y+c=0 , then the value of c is a a2-a2 2+b1 2-b2 2 sqrt(a1 2+b1 2-a2 2-b2 2) 1/2(a1 2+a2 2+b1 2+b2 2) 1/2(a2 2+b2 2-a1 2-b1 2)

cIf a_1,a_2,a_3,..,a_n in R then (x-a_1)^2+(x-a_2)^2+....+(x-a_n)^2 assumes its least value at x=

If a_1, a_2, a_3, ,a_(2n+1) are in A.P., then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_(2n)-a_2)/(a_(2n)+a_2)++(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to a. (n(n+1))/2xx(a_2-a_1)/(a_(n+1)) b. (n(n+1))/2 c. (n+1)(a_2-a_1) d. none of these