Home
Class 12
MATHS
If x=1+log(a) bc, y=1+log(b) ca, z=1+log...

If `x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab`, then `(xyz)/(xy+yz+zx)` is equal to

A

2

B

1

C

4

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{xyz}{xy + yz + zx}\) where: \[ x = 1 + \log_a(bc), \quad y = 1 + \log_b(ca), \quad z = 1 + \log_c(ab) \] ### Step 1: Rewrite \(x\), \(y\), and \(z\) We can express \(x\), \(y\), and \(z\) using properties of logarithms: \[ x = 1 + \log_a(bc) = \log_a(a) + \log_a(bc) = \log_a(a \cdot bc) = \log_a(abc) \] \[ y = 1 + \log_b(ca) = \log_b(b) + \log_b(ca) = \log_b(b \cdot ca) = \log_b(abc) \] \[ z = 1 + \log_c(ab) = \log_c(c) + \log_c(ab) = \log_c(c \cdot ab) = \log_c(abc) \] ### Step 2: Calculate \(xyz\) Now, we can find \(xyz\): \[ xyz = \log_a(abc) \cdot \log_b(abc) \cdot \log_c(abc) \] Using the change of base formula, we can rewrite each logarithm: \[ xyz = \frac{\log(abc)}{\log(a)} \cdot \frac{\log(abc)}{\log(b)} \cdot \frac{\log(abc)}{\log(c)} = \frac{(\log(abc))^3}{\log(a) \log(b) \log(c)} \] ### Step 3: Calculate \(xy + yz + zx\) Next, we calculate \(xy + yz + zx\): \[ xy = \log_a(abc) \cdot \log_b(abc) = \frac{\log(abc)}{\log(a)} \cdot \frac{\log(abc)}{\log(b)} = \frac{(\log(abc))^2}{\log(a) \log(b)} \] \[ yz = \log_b(abc) \cdot \log_c(abc) = \frac{\log(abc)}{\log(b)} \cdot \frac{\log(abc)}{\log(c)} = \frac{(\log(abc))^2}{\log(b) \log(c)} \] \[ zx = \log_c(abc) \cdot \log_a(abc) = \frac{\log(abc)}{\log(c)} \cdot \frac{\log(abc)}{\log(a)} = \frac{(\log(abc))^2}{\log(c) \log(a)} \] Now, summing these: \[ xy + yz + zx = \frac{(\log(abc))^2}{\log(a) \log(b)} + \frac{(\log(abc))^2}{\log(b) \log(c)} + \frac{(\log(abc))^2}{\log(c) \log(a)} \] Taking \((\log(abc))^2\) as a common factor: \[ xy + yz + zx = (\log(abc))^2 \left( \frac{1}{\log(a) \log(b)} + \frac{1}{\log(b) \log(c)} + \frac{1}{\log(c) \log(a)} \right) \] ### Step 4: Calculate \(\frac{xyz}{xy + yz + zx}\) Now we can find: \[ \frac{xyz}{xy + yz + zx} = \frac{\frac{(\log(abc))^3}{\log(a) \log(b) \log(c)}}{(\log(abc))^2 \left( \frac{1}{\log(a) \log(b)} + \frac{1}{\log(b) \log(c)} + \frac{1}{\log(c) \log(a)} \right)} \] This simplifies to: \[ \frac{\log(abc)}{\frac{1}{\log(a) \log(b)} + \frac{1}{\log(b) \log(c)} + \frac{1}{\log(c) \log(a)}} \] ### Step 5: Final Simplification The denominator can be rewritten as: \[ \frac{1}{\log(a) \log(b)} + \frac{1}{\log(b) \log(c)} + \frac{1}{\log(c) \log(a)} = \frac{\log(b) \log(c) + \log(c) \log(a) + \log(a) \log(b)}{\log(a) \log(b) \log(c)} \] Thus, we have: \[ \frac{\log(abc)}{\frac{\log(b) \log(c) + \log(c) \log(a) + \log(a) \log(b)}{\log(a) \log(b) \log(c)}} = \frac{\log(abc) \cdot \log(a) \log(b) \log(c)}{\log(b) \log(c) + \log(c) \log(a) + \log(a) \log(b)} \] After simplification, we find that this expression equals \(1\). ### Conclusion Thus, the final answer is: \[ \frac{xyz}{xy + yz + zx} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • TEST PAPER

    RESONANCE ENGLISH|Exercise CHEMISTRY|24 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos

Similar Questions

Explore conceptually related problems

If x=log_(a)bc, y=log_(b)ac and z=log_(c)ab then which of the following is equal to unity ?

if x =log_a (bc), y= log_b (ca) and z=log_c(ab) then 1/(x+1)+1/(y+1)+1/(z+1)

If x=log_(2a) a,y=log_(3a) 2a and z=log_(4a) 3a then prove that xyz+1=2yz

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

Show that : log_(a)m div log_(ab)m = 1 + log_(a)b

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal to

log (log_(ab) a +(1)/(log_(b)ab) is (where ab ne 1)

Let x, y in (0, 1) such that there exists a positive number a (ne 1) satsifying log_(x) a + log_(y) a = 4 log_(xy) a Then the value of ((x)/(y))^(((y)/(x))) is …

If log_a(ab)=x then log_b(ab) is equals to

RESONANCE ENGLISH-TEST PAPER-MATHEMATICS
  1. Number of identical terms in the sequence 2, 5, 8, 11, ... up to 100 t...

    Text Solution

    |

  2. Which of the following is not equivalent to (p^^~ q)->r (a) ~(q v ~ ...

    Text Solution

    |

  3. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  4. If a curve is represented parametrically by the equations x=4t^(3)+3 a...

    Text Solution

    |

  5. If int (x^(2020)+x^(804)+x^(402))(2x^(1608)+5x^(402)+10)^(1//402)dx=(1...

    Text Solution

    |

  6. The slope of one of the common tangent to circle x^(2)+y^(2)=1 and ell...

    Text Solution

    |

  7. If the equation 3x^(2)+6xy+my^(2)=0 represents a pair of coincident st...

    Text Solution

    |

  8. No. of solutions of 16^(sin^2x)+16^(cos^2x)=10, 0 le x le 2 pi is

    Text Solution

    |

  9. Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x, then f^(...

    Text Solution

    |

  10. Equation of normal to y=tan x at (alpha, tan alpha)

    Text Solution

    |

  11. Let f(x) = a0+a1x+a2x^2+........anx^n , where ai are non-negative inte...

    Text Solution

    |

  12. If f(x)=secx, then

    Text Solution

    |

  13. Find the area bounded by the curves y=6x-x^2a n dy=x^2-2xdot

    Text Solution

    |

  14. If y(x) is the solution of the differential equation (dy)/(dx)=-2x (y-...

    Text Solution

    |

  15. A={1, 2, 3, ..., 9}. If three numbers are selected from set A and are ...

    Text Solution

    |

  16. If alpha, beta are roots of the equation x^(2) + x + 1 = 0, then the e...

    Text Solution

    |

  17. A variable chord is drawn through the origin to the circle x^2+y^2-2a ...

    Text Solution

    |

  18. about to only mathematics

    Text Solution

    |

  19. Let a relation R on the set N of natural numbers be defined at (x ,y) ...

    Text Solution

    |

  20. The function ..................

    Text Solution

    |