Home
Class 12
MATHS
Let f : [-1, -1/2] rarr [-1, 1] is defin...

Let `f : [-1, -1/2] rarr [-1, 1]` is defined by `f(x)=4x^(3)-3x`, then `f^(-1) (x)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = 4x^3 - 3x \) defined on the interval \( [-1, -\frac{1}{2}] \) with a range of \( [-1, 1] \), we can follow these steps: ### Step 1: Set up the equation We start by letting \( y = f(x) \): \[ y = 4x^3 - 3x \] ### Step 2: Rearrange the equation We want to express \( x \) in terms of \( y \). Rearranging gives us: \[ 4x^3 - 3x - y = 0 \] ### Step 3: Substitute \( x \) with \( \cos(\theta) \) To solve for \( x \), we can use the substitution \( x = \cos(\theta) \): \[ y = 4(\cos(\theta))^3 - 3(\cos(\theta)) \] ### Step 4: Use the identity for cosine Using the trigonometric identity for cosine, we know: \[ 4\cos^3(\theta) - 3\cos(\theta) = \cos(3\theta) \] Thus, we can rewrite our equation as: \[ y = \cos(3\theta) \] ### Step 5: Solve for \( \theta \) To find \( \theta \), we take the inverse cosine: \[ 3\theta = \cos^{-1}(y) \] So, \[ \theta = \frac{1}{3} \cos^{-1}(y) \] ### Step 6: Substitute back to find \( x \) Since \( x = \cos(\theta) \), we substitute \( \theta \): \[ x = \cos\left(\frac{1}{3} \cos^{-1}(y)\right) \] ### Step 7: Write the inverse function Thus, we can express the inverse function \( f^{-1}(x) \) as: \[ f^{-1}(x) = \cos\left(\frac{1}{3} \cos^{-1}(x)\right) \] ### Final Answer The inverse function is: \[ f^{-1}(x) = \cos\left(\frac{1}{3} \cos^{-1}(x)\right) \]

To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = 4x^3 - 3x \) defined on the interval \( [-1, -\frac{1}{2}] \) with a range of \( [-1, 1] \), we can follow these steps: ### Step 1: Set up the equation We start by letting \( y = f(x) \): \[ y = 4x^3 - 3x \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPER

    RESONANCE ENGLISH|Exercise CHEMISTRY|24 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos

Similar Questions

Explore conceptually related problems

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: Let f:[0,3]to[1,13] is defined by f(x)=x^(2)+x+1 , then find f^(-1)(x) .

If f:R-{-(1)/(2)}toR-{(1)/(2)} is defined by f(x)=(x-3)/(2x+1) , then f^(-1)(x) is

Let f:(-oo,2] to (-oo,4] be a function defined by f(x)=4x-x^(2) . Then, f^(-1)(x) is

Let f:[-1,3]-> [-8, 72] be defined as, f(x) = 4x^3-12x ,then f is

Let f: R->R be defined by f(x)=x^4 , write f^(-1)(1) .

If f: R rArr R and f(x)= 4x + 3 , then f^(-1) (x) is

If the function f:[1,∞)→[1,∞) is defined by f(x)=2 ^(x(x-1)) then f^-1(x) is

A function f :Rto R is defined as f (x) =3x ^(2) +1. then f ^(-1)(x) is :

A function f :Rto R is defined as f (x) =3x ^(2) +1. then f ^(-1)(x) is :