Home
Class 12
MATHS
Let f(x) = a0+a1x+a2x^2+........anx^n , ...

Let `f(x) = a_0+a_1x+a_2x^2+........a_nx^n `, where `a_i` are non-negative integers for `i = 0, 1, 2..........n`. If `f(1) = 21` and `f(25) = 78357`. Then, find the value of `f(10)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the polynomial function given by: \[ f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n \] where \( a_i \) are non-negative integers. ### Step 1: Set up the equations using the given values We know: 1. \( f(1) = 21 \) 2. \( f(25) = 78357 \) From \( f(1) = 21 \), we can write: \[ a_0 + a_1 + a_2 + a_3 + \ldots + a_n = 21 \quad \text{(Equation 1)} \] From \( f(25) = 78357 \), we can write: \[ a_0 + 25a_1 + 625a_2 + 15625a_3 + 390625a_4 + \ldots = 78357 \quad \text{(Equation 2)} \] ### Step 2: Analyze the degree of the polynomial Since \( 25^4 = 390625 \) is greater than \( 78357 \), we conclude that \( a_4, a_5, \ldots, a_n \) must be zero. Thus, we only need to consider \( a_0, a_1, a_2, a_3 \). ### Step 3: Rewrite Equation 2 Now, we can simplify Equation 2 to: \[ a_0 + 25a_1 + 625a_2 + 15625a_3 = 78357 \] ### Step 4: Substitute \( a_0 \) from Equation 1 into Equation 2 From Equation 1, we can express \( a_0 \) as: \[ a_0 = 21 - a_1 - a_2 - a_3 \] Substituting this into Equation 2 gives: \[ (21 - a_1 - a_2 - a_3) + 25a_1 + 625a_2 + 15625a_3 = 78357 \] ### Step 5: Simplify the equation This simplifies to: \[ 21 + 24a_1 + 624a_2 + 15624a_3 = 78357 \] Subtracting 21 from both sides: \[ 24a_1 + 624a_2 + 15624a_3 = 78336 \] ### Step 6: Divide the entire equation by 24 Dividing through by 24 gives: \[ a_1 + 26a_2 + 651a_3 = 3264 \quad \text{(Equation 3)} \] ### Step 7: Solve for \( a_3 \) Since \( a_3 \) must be a non-negative integer, we can try different values for \( a_3 \) to find suitable values for \( a_1 \) and \( a_2 \). 1. **If \( a_3 = 5 \)**: \[ a_1 + 26a_2 + 651 \cdot 5 = 3264 \\ a_1 + 26a_2 + 3255 = 3264 \\ a_1 + 26a_2 = 9 \] This gives us possible values for \( a_1 \) and \( a_2 \): - If \( a_2 = 0 \), then \( a_1 = 9 \). - If \( a_2 = 1 \), then \( a_1 = -17 \) (not valid). - Therefore, \( a_2 = 0 \) and \( a_1 = 9 \). ### Step 8: Find \( a_0 \) Using \( a_0 + a_1 + a_2 + a_3 = 21 \): \[ a_0 + 9 + 0 + 5 = 21 \] Thus, \[ a_0 = 21 - 14 = 7 \] ### Step 9: Values of coefficients We have found: - \( a_0 = 7 \) - \( a_1 = 9 \) - \( a_2 = 0 \) - \( a_3 = 5 \) ### Step 10: Write the polynomial Now we can write the polynomial: \[ f(x) = 7 + 9x + 5x^3 \] ### Step 11: Calculate \( f(10) \) Now we can find \( f(10) \): \[ f(10) = 7 + 9(10) + 5(10^3) \\ = 7 + 90 + 5000 \\ = 5097 \] ### Final Answer Thus, the value of \( f(10) \) is: \[ \boxed{5097} \] ---

To solve the problem step by step, we start with the polynomial function given by: \[ f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots + a_n x^n \] where \( a_i \) are non-negative integers. ### Step 1: Set up the equations using the given values ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPER

    RESONANCE ENGLISH|Exercise CHEMISTRY|24 Videos
  • SEQUENCE & SERIES

    RESONANCE ENGLISH|Exercise EXERCISE -2 (PART-II : PREVIOUSLY ASKED QUESTION OF RMO)|3 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

If (1+2x +3x^2)^10 = a_0 +a_1x +a_2x^2 + ……+a_20x^20 then a_1 = ?

let f(x)=a_0+a_1x^2+a_2x^4+............a_nx^(2n) where 0< a_0 < a_1 < a_3 ............< a_n then f(x) has

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to

If (1-x+x^2)^n=a_0+a_1x+a_2x^2+ .........+a_(2n)x^(2n),\ find the value of a_0+a_2+a_4+........+a_(2n)dot

Let p(x) = a_0+a_1x+ a_2x^2+.............+a_n x^n be a non zero polynomial with integer coefficient . if p( sqrt(2) + sqrt(3) + sqrt(6) )=0 , the smallest possible value of n . is

If (1 +x+x^2)^25 = a_0 + a_1x+ a_2x^2 +..... + a_50.x^50 then a_0 + a_2 + a_4 + ... + a_50 is :

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

Let a function f(x)s a t i sfi e sf(x)+f(2x)+f(2-x)+f(1+x)=AAx in Rdot Then find the value of f(0)dot

RESONANCE ENGLISH-TEST PAPER-MATHEMATICS
  1. Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x, then f^(...

    Text Solution

    |

  2. Equation of normal to y=tan x at (alpha, tan alpha)

    Text Solution

    |

  3. Let f(x) = a0+a1x+a2x^2+........anx^n , where ai are non-negative inte...

    Text Solution

    |

  4. If f(x)=secx, then

    Text Solution

    |

  5. Find the area bounded by the curves y=6x-x^2a n dy=x^2-2xdot

    Text Solution

    |

  6. If y(x) is the solution of the differential equation (dy)/(dx)=-2x (y-...

    Text Solution

    |

  7. A={1, 2, 3, ..., 9}. If three numbers are selected from set A and are ...

    Text Solution

    |

  8. If alpha, beta are roots of the equation x^(2) + x + 1 = 0, then the e...

    Text Solution

    |

  9. A variable chord is drawn through the origin to the circle x^2+y^2-2a ...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Let a relation R on the set N of natural numbers be defined at (x ,y) ...

    Text Solution

    |

  12. The function ..................

    Text Solution

    |

  13. If f(x)=1-x-x^(3), .............

    Text Solution

    |

  14. The value of k if

    Text Solution

    |

  15. Solve the equation (dy)/(dx)=1-1/x^(2)..... if f(2)=7..............

    Text Solution

    |

  16. Let A and B be two events.if P(A)=0.3, P(B)=0.4, P(A' nn B')=0.4 then ...

    Text Solution

    |

  17. Number of identical ...............

    Text Solution

    |

  18. Which of the following irrational ?

    Text Solution

    |

  19. If x=1+log(a) bc, y=1+log(b) ca, z=1+log(c) ab, then (xyz)/(xy+yz+zx) ...

    Text Solution

    |

  20. If a curve is represented parametrically by the equation x = 4t^(3)+3 ...

    Text Solution

    |