Home
Class 12
PHYSICS
Calculate the wavelength for the first t...

Calculate the wavelength for the first three lines in Paschen series.
(GivenRH =`1.097 xx10^7 m^(-1)`)

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the wavelengths for the first three lines in the Paschen series, we will use the formula derived from the Rydberg formula for hydrogen spectral lines: \[ \frac{1}{\lambda} = R_H \left( \frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \] Where: - \( \lambda \) is the wavelength, - \( R_H = 1.097 \times 10^7 \, \text{m}^{-1} \) (Rydberg constant), - \( n_1 \) is the lower energy level (for the Paschen series, \( n_1 = 3 \)), - \( n_2 \) is the higher energy level (for the first three lines, \( n_2 = 4, 5, 6 \)). ### Step 1: Calculate the wavelength for the transition from \( n_2 = 4 \) to \( n_1 = 3 \) \[ \frac{1}{\lambda_4} = R_H \left( \frac{1}{3^2} - \frac{1}{4^2} \right) \] Calculating the right-hand side: \[ \frac{1}{\lambda_4} = 1.097 \times 10^7 \left( \frac{1}{9} - \frac{1}{16} \right) \] Calculating \( \frac{1}{9} - \frac{1}{16} \): \[ \frac{1}{9} = \frac{16}{144}, \quad \frac{1}{16} = \frac{9}{144} \quad \Rightarrow \quad \frac{1}{9} - \frac{1}{16} = \frac{16 - 9}{144} = \frac{7}{144} \] Now substituting back: \[ \frac{1}{\lambda_4} = 1.097 \times 10^7 \times \frac{7}{144} \] Calculating: \[ \frac{1}{\lambda_4} \approx 5.36 \times 10^5 \, \text{m}^{-1} \] Now, taking the reciprocal to find \( \lambda_4 \): \[ \lambda_4 \approx \frac{1}{5.36 \times 10^5} \approx 1.87 \times 10^{-6} \, \text{m} \] ### Step 2: Calculate the wavelength for the transition from \( n_2 = 5 \) to \( n_1 = 3 \) \[ \frac{1}{\lambda_5} = R_H \left( \frac{1}{3^2} - \frac{1}{5^2} \right) \] Calculating the right-hand side: \[ \frac{1}{\lambda_5} = 1.097 \times 10^7 \left( \frac{1}{9} - \frac{1}{25} \right) \] Calculating \( \frac{1}{9} - \frac{1}{25} \): \[ \frac{1}{9} = \frac{25}{225}, \quad \frac{1}{25} = \frac{9}{225} \quad \Rightarrow \quad \frac{1}{9} - \frac{1}{25} = \frac{25 - 9}{225} = \frac{16}{225} \] Now substituting back: \[ \frac{1}{\lambda_5} = 1.097 \times 10^7 \times \frac{16}{225} \] Calculating: \[ \frac{1}{\lambda_5} \approx 7.78 \times 10^5 \, \text{m}^{-1} \] Taking the reciprocal to find \( \lambda_5 \): \[ \lambda_5 \approx \frac{1}{7.78 \times 10^5} \approx 1.28 \times 10^{-6} \, \text{m} \] ### Step 3: Calculate the wavelength for the transition from \( n_2 = 6 \) to \( n_1 = 3 \) \[ \frac{1}{\lambda_6} = R_H \left( \frac{1}{3^2} - \frac{1}{6^2} \right) \] Calculating the right-hand side: \[ \frac{1}{\lambda_6} = 1.097 \times 10^7 \left( \frac{1}{9} - \frac{1}{36} \right) \] Calculating \( \frac{1}{9} - \frac{1}{36} \): \[ \frac{1}{9} = \frac{4}{36}, \quad \frac{1}{36} = \frac{1}{36} \quad \Rightarrow \quad \frac{1}{9} - \frac{1}{36} = \frac{4 - 1}{36} = \frac{3}{36} = \frac{1}{12} \] Now substituting back: \[ \frac{1}{\lambda_6} = 1.097 \times 10^7 \times \frac{1}{12} \] Calculating: \[ \frac{1}{\lambda_6} \approx 9.14 \times 10^5 \, \text{m}^{-1} \] Taking the reciprocal to find \( \lambda_6 \): \[ \lambda_6 \approx \frac{1}{9.14 \times 10^5} \approx 1.09 \times 10^{-6} \, \text{m} \] ### Final Results 1. \( \lambda_4 \approx 1.87 \times 10^{-6} \, \text{m} \) 2. \( \lambda_5 \approx 1.28 \times 10^{-6} \, \text{m} \) 3. \( \lambda_6 \approx 1.09 \times 10^{-6} \, \text{m} \)
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Structure of Atoms and Nuclei (Long Answer ( LA) ( 4 marks Each) )|3 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Semiconductors Devices (MCQ’S (1 Mark Each) )|8 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Structure of Atoms and Nuclei (Short Answer I (SA1) ( 2 MARKS Each ) )|10 Videos
  • MULTIPLE CHOICE QUESTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Communication Systems|6 Videos
  • SHORT ANSWER QUESTIONS

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Assignments|3 Videos

Similar Questions

Explore conceptually related problems

Wavelength of the first line of Paschen series is - (R = 109700 cm^-1 )

Calculate the wavelengths of the member of Lyman, Balmer and Paschen series.

Calculate the wavelength of the first line in the balmer series of hydrogen spectrum

Calculate longest wavelength of Paschen series. Given R=1.097xx10^(7)m^(-1) .

Determine the wavelength of the second line of the Paschen series for hydrogen.

Calculate the wavelength of the first and the last line in the Balmer series of hydrogen spectrum?

Calculate the wavelength of the first line in the series limit for the Lyman series for hydrogen

the wavelength limit present in the pfund series is (R=1-097xx10^7m^-1)

If lambda_(1) and lambda_(2) are the wavelength of the first members of the Lyman and Paschen series, respectively , then lambda_(1) lambda_(2) is