Home
Class 12
MATHS
If A=|a(ij)](2 xx 2) where a(ij) = i-j t...

If `A=|a_(ij)]_(2 xx 2)` where `a_(ij) = i-j` then A =………….

Answer

Step by step text solution for If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =…………. by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [SOLVE THE FOLLOWING]|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [4 MARKS]|5 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES)|20 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

If A=[a_(ij)]_(n xx n,) where a_(ij)=i^(100)+j^(100) then lim_(n rarr oo)((sum_(i=1)^(n)a_(ij))/(n^(101))) equals

Knowledge Check

  • If A = (a_(ij))_(2xx2) where a_(ij) = i+j then A is equal to

    A
    `[(1,1),(2,2)]`
    B
    `[(1,2),(1,2)]`
    C
    `[(1,4),(3,3)]`
    D
    `[(2,3),(3,4)]`
  • If A = (a_(ij))_(3xx3) where a_(ij) = cos (i+j) then

    A
    A is symmetric
    B
    A is skew symmetric
    C
    A is a triangular matrix
    D
    A is a singular matrix
  • If A=[a_(ij)]_(2xx2) , where a_(ij)=i+j , then A is equal to

    A
    `[[1,1],[2,2]]`
    B
    `[[1,2],[1,2]]`
    C
    `[[1,2],[3,4]]`
    D
    `[[2,3],[3,4]]`
  • Similar Questions

    Explore conceptually related problems

    Let A=[a_(ij)]_(n xx n) where a_(ij)=i^(2)-j^(2). Then A is: (A) skew symmetric matrix (B) symmetric matrix (C) null matrix (D) unit matrix

    IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

    If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

    If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to

    If matrix A=[a_(ij)]_(2xx2^(,)) where a_(ij)=1" if "i!=j =0" if "i=j then A^(2) is equal to :