Home
Class 12
MATHS
If y =log (log x) then (dy)/(dx) =...

If `y =log (log x)` then `(dy)/(dx) =`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \log(\log x) \), we will use the chain rule. Here’s the step-by-step solution: ### Step 1: Identify the outer and inner functions We have: - Outer function: \( f(u) = \log(u) \) - Inner function: \( g(x) = \log(x) \) So, we can express \( y \) as: \[ y = f(g(x)) = \log(\log x) \] ### Step 2: Differentiate the outer function Using the chain rule, we differentiate the outer function: \[ \frac{dy}{du} = \frac{1}{u} \quad \text{where } u = g(x) = \log(x) \] ### Step 3: Differentiate the inner function Next, we differentiate the inner function: \[ \frac{du}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \] ### Step 4: Apply the chain rule Now, we apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{\log x} \cdot \frac{1}{x} \] ### Step 5: Simplify the expression Thus, we have: \[ \frac{dy}{dx} = \frac{1}{x \log x} \] ### Final Answer The derivative is: \[ \frac{dy}{dx} = \frac{1}{x \log x} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) (Solve the following : (3 Marks)) |9 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) ( Solve the following : (4 Marks) )|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) (FILL IN THE BLANKS) |10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If y=x^(log(log x)); then (dy)/(dx) is

If y=log(log(logx^3)) then (dy)/(dx)=

Knowledge Check

  • If y=log_2 (log_2 x) , then (dy)/(dx) =

    A
    `(log_e2)/(xlog_ex)`
    B
    `1/(log_e(2x)^x)`
    C
    `1/((xlog_ex)log_e2)`
    D
    `1/(x(log_2x)^2)`
  • If y = e^(log x ) , then ( dy)/(dx)

    A
    ` e^(log x ) `
    B
    ` (1)/(x) `
    C
    ` 0`
    D
    `1`
  • If y= e^(log (log x )) ,then (dy)/(dx) =

    A
    ` (1)/(x) `
    B
    ` (1)/(logx ) `
    C
    ` (1)/( xlogx ) `
    D
    ` (x)/( log x ) `
  • Similar Questions

    Explore conceptually related problems

    If y= log _5 (log _7x),then (dy)/(dx) =

    If Y= log_7 (log_7 x), then (dy)/(dx) =

    If y =log x^(x) ,then (dy)/(dx) =

    If y= (log x) ^(logx) ,then (dy)/(dx)=

    if y= x^((log x)^(log (log x)) and if k=(y log y)/( x log x) then (dy)/(dx) =