Home
Class 12
MATHS
If y =log (log x) then (dy)/(dx) =...

If `y =log (log x)` then `(dy)/(dx) =`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \log(\log x) \), we will use the chain rule. Here’s the step-by-step solution: ### Step 1: Identify the outer and inner functions We have: - Outer function: \( f(u) = \log(u) \) - Inner function: \( g(x) = \log(x) \) So, we can express \( y \) as: \[ y = f(g(x)) = \log(\log x) \] ### Step 2: Differentiate the outer function Using the chain rule, we differentiate the outer function: \[ \frac{dy}{du} = \frac{1}{u} \quad \text{where } u = g(x) = \log(x) \] ### Step 3: Differentiate the inner function Next, we differentiate the inner function: \[ \frac{du}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x} \] ### Step 4: Apply the chain rule Now, we apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{1}{\log x} \cdot \frac{1}{x} \] ### Step 5: Simplify the expression Thus, we have: \[ \frac{dy}{dx} = \frac{1}{x \log x} \] ### Final Answer The derivative is: \[ \frac{dy}{dx} = \frac{1}{x \log x} \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) (Solve the following : (3 Marks)) |9 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) ( Solve the following : (4 Marks) )|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) (FILL IN THE BLANKS) |10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If y=log_2 (log_2 x) , then (dy)/(dx) =

If y = e^(log x ) , then ( dy)/(dx)

If y=x^(log(log x)); then (dy)/(dx) is

If y= e^(log (log x )) ,then (dy)/(dx) =

If y= log _5 (log _7x),then (dy)/(dx) =

If y =log x^(x) ,then (dy)/(dx) =

If y= (log x) ^(logx) ,then (dy)/(dx)=

If y=log(log(logx^3)) then (dy)/(dx)=