Home
Class 12
MATHS
If x= 5m, y= m , where m is parameter, t...

If x= 5m, y= m , where m is parameter, then `(dy)/(dx) = 1/5`. (True/False)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine if \( \frac{dy}{dx} = \frac{1}{5} \) given \( x = 5m \) and \( y = m \), where \( m \) is a parameter. ### Step-by-Step Solution: 1. **Identify the equations:** \[ x = 5m \quad \text{and} \quad y = m \] 2. **Differentiate \( x \) with respect to \( m \):** \[ \frac{dx}{dm} = \frac{d(5m)}{dm} = 5 \cdot \frac{dm}{dm} = 5 \] 3. **Differentiate \( y \) with respect to \( m \):** \[ \frac{dy}{dm} = \frac{d(m)}{dm} = 1 \] 4. **Use the chain rule to find \( \frac{dy}{dx} \):** \[ \frac{dy}{dx} = \frac{dy}{dm} \cdot \frac{dm}{dx} \] 5. **Find \( \frac{dm}{dx} \):** Since \( \frac{dx}{dm} = 5 \), we can find \( \frac{dm}{dx} \) as the reciprocal: \[ \frac{dm}{dx} = \frac{1}{\frac{dx}{dm}} = \frac{1}{5} \] 6. **Substituting the values into the chain rule:** \[ \frac{dy}{dx} = \frac{dy}{dm} \cdot \frac{dm}{dx} = 1 \cdot \frac{1}{5} = \frac{1}{5} \] 7. **Conclusion:** Since we have found that \( \frac{dy}{dx} = \frac{1}{5} \), we can confirm that the statement is **True**.
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) (Solve the following : (3 Marks)) |9 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) ( Solve the following : (4 Marks) )|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) (FILL IN THE BLANKS) |10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If x= 2at , y= 2a , where t is parameter, then (dy)/(dx) = 1/t . (True/False)

If x=2am, y=2am^(2) where m be the parameter then (dy)/(dx) =?

If y=e^(x) , then (dy)/(dx) = e^(x) (True/False)

If x=a(t-(1)/(t)),y=a(t+(1)/(t)) , where t be the parameter, then (dy)/(dx)=?

if x^(m)*y^(n)=1 then (dy)/(dx)

If x=t+(1)/(t) and y=t-(1)/(t) , where t is a parameter,then a value of (dy)/(dx)

If x -= y (mod m), then 6x - 5 -= 6y - 5 (mod m). (True/False).

If y=m^(2)sec^(-1)x, then find (dy)/(dx) .

If x^(m) y^(n) =2(x+y)^(m+n) , the value of (dy)/(dx) is