Home
Class 12
MATHS
The value of int (dx)/(sqrt (a-x))...

The value of `int (dx)/(sqrt (a-x))`

A

`2 sqrt ( a- x ) + c`

B

`-2 sqrt (a- x ) + c`

C

`sqrtx + c`

D

`x +c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{a - x}} \), we will use a substitution method. Here’s a step-by-step solution: ### Step 1: Set up the integral We start with the integral: \[ I = \int \frac{dx}{\sqrt{a - x}} \] ### Step 2: Use substitution Let’s make the substitution: \[ t = \sqrt{a - x} \] Then, squaring both sides gives: \[ t^2 = a - x \implies x = a - t^2 \] ### Step 3: Differentiate to find \( dx \) Now, we differentiate \( x \) with respect to \( t \): \[ dx = -2t \, dt \] ### Step 4: Substitute \( dx \) and \( t \) into the integral Substituting \( dx \) and \( \sqrt{a - x} \) into the integral gives: \[ I = \int \frac{-2t \, dt}{t} = \int -2 \, dt \] ### Step 5: Integrate Now, we can integrate: \[ I = -2t + C \] ### Step 6: Substitute back for \( t \) Now, we substitute back \( t = \sqrt{a - x} \): \[ I = -2\sqrt{a - x} + C \] ### Final Result Thus, the value of the integral is: \[ I = -2\sqrt{a - x} + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (FILL IN THE BLANK)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (TRUE OR FALSE)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (APPLICATIONS OF DERIVATIVE) (Activity (4 Marks))|4 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(x(sqrt(1-x^(3)))) is equal to

int(dx)/(sqrt(x))

Knowledge Check

  • The value of int(dx)/sqrt(1-x) is

    A
    `2sqrt(1-x)+c`
    B
    `-2sqrt(1-x)+c`
    C
    `-sin^(-1)sqrt(x)+c`
    D
    `sin^(-1)sqrt(x)+c`
  • The value of int(2dx)/sqrt(1-4x^(2)) is

    A
    `tan^(-1)(2x)+c`
    B
    `cos^(-1)(2x)+c`
    C
    `cot^(-1)(2x)+c`
    D
    `sin^(-1)(2x)+c`
  • The value of int(dx)/(sqrt(4x-3-x^(2))) is equal to

    A
    `sin^(-1) (x - 1) + C`
    B
    `log|(x-2)+sqrt(4x-3-x^(2))|`
    C
    `log|(x-1)+sqrt(4x-3-x^(2))|+C`
    D
    `sin^(-1)(x-2)+C`
  • Similar Questions

    Explore conceptually related problems

    The value of int(dx)/((1+sqrt(x))(sqrt(x-x^(2)))) is equal to

    The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

    What is the value of int(dx)/sqrt(2ax-x^2)?

    The value of int (2dx)/sqrt1-4x^2) is

    The value of int(dx)/(4sqrt((x-1)^(3)(x+2^(2)))) is