Home
Class 12
MATHS
int (x + (1)/(x)) ^(3) dx=...

`int (x + (1)/(x)) ^(3) dx=`

A

`(1)/(4) (x + (1)/(x)) ^(4) + c`

B

`(x ^(4))/(4) + (3x ^(2))/(2) + 3 log x - (1)/( 2x ^(2)) + c`

C

`(x ^(4))/(4) + ( 3x ^(2))/(2) + 3 log x + (1)/( x ^(2)) + c`

D

`(x-x ^(-1)) ^(3) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( x + \frac{1}{x} \right)^3 \, dx \), we will follow these steps: ### Step 1: Expand the integrand We start by expanding \( \left( x + \frac{1}{x} \right)^3 \) using the binomial theorem: \[ \left( x + \frac{1}{x} \right)^3 = x^3 + 3x^2 \cdot \frac{1}{x} + 3x \cdot \left(\frac{1}{x}\right)^2 + \left(\frac{1}{x}\right)^3 \] This simplifies to: \[ x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} \] ### Step 2: Rewrite the integral Now we can rewrite the integral: \[ \int \left( x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} \right) \, dx \] ### Step 3: Separate the integral We can separate the integral into individual terms: \[ \int x^3 \, dx + \int 3x \, dx + \int \frac{3}{x} \, dx + \int \frac{1}{x^3} \, dx \] ### Step 4: Integrate each term Now we will integrate each term separately: 1. For \( \int x^3 \, dx \): \[ = \frac{x^4}{4} \] 2. For \( \int 3x \, dx \): \[ = \frac{3x^2}{2} \] 3. For \( \int \frac{3}{x} \, dx \): \[ = 3 \ln |x| \] 4. For \( \int \frac{1}{x^3} \, dx \): \[ = -\frac{1}{2x^2} \] ### Step 5: Combine the results Now we combine all the results: \[ \int \left( x + \frac{1}{x} \right)^3 \, dx = \frac{x^4}{4} + \frac{3x^2}{2} - \frac{1}{2x^2} + 3 \ln |x| + C \] ### Final Answer Thus, the final answer is: \[ \int \left( x + \frac{1}{x} \right)^3 \, dx = \frac{x^4}{4} + \frac{3x^2}{2} - \frac{1}{2x^2} + 3 \ln |x| + C \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (FILL IN THE BLANK)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (TRUE OR FALSE)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (APPLICATIONS OF DERIVATIVE) (Activity (4 Marks))|4 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int(e^((1)/(x)))/(x^(3))dx

int (2x) / (x ^ (3) -1) dx

int (1)/(x-x^(3))dx

int(x^(3)-1)/(x^(3)+x)dx=

int(2x-1)/(x+1)^(3)dx=

int ((1+x)/x)^3 dx

int(x^(3)-1)/(x^(3)+x)dx

Find : int{(x^3 + 1)/(x^3-x)} dx

int (dx)/((x+1)(2x+1)) (ii) int (x-1)/((x-2)(x-3)) dx .

int(x^(3)-1)/(x^(3)+n)dx