Home
Class 12
MATHS
If int ((x -1) dx )/( (x +1) (x -2))= A ...

If `int ((x -1) dx )/( (x +1) (x -2))= A log |x +1| +B log |x-2|` then `A + B =1`

Text Solution

Verified by Experts

The correct Answer is:
T
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (3 MARKS EACH)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (FILL IN THE BLANK)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

int_(1)^(2) (dx)/(x(1+log x)^(2))

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

int((x+1)(x+log x)^(2))/(x)dx

int(x-1)/((x-3)(x-2))dx=A ln(x-3)+B ln(x-2)+c , then find the value of A+B

(i) int x^2 log x dx (ii) int (x^2+1) log x dx

int(dx)/(x(log x-1)(log x+1)

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =

int((ln((1+x)/(1-x)))/(1-x^(2))dx