Home
Class 12
MATHS
For int (x -1)/( (x +1 ) ^(3)) e ^(x) dx...

For `int (x -1)/( (x +1 ) ^(3)) e ^(x) dx = e ^(x) f (x) + c , f (x) =(x +1) ^(2).`

Text Solution

Verified by Experts

The correct Answer is:
F
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (3 MARKS EACH)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (FILL IN THE BLANK)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)((x-1)/(x^(2)))dx = __________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int(x e^(x))/((1+x)^(2))dx = ________.

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(sin x + cos x)dx =

Read the following text and answer the followig questions on the basis of the same : inte^(x)[f(x) + f'(x)]dx = int e^(x)f(x)dx + int e^(x) f'(x)dx = f(x)e^(x) - int f'(x)e^(x)dx + int f'(x)e^(x)dx = e^(x)f(x) + c int e^(x)(x+1)dx = __________.

If int((x-1)/(x^(2)))e^(x)dx=f(x)e^(x)+C, then write the value of f(x)

If int((x-1)/(x^(2)))e^(x)dx=f(x)e^(x)+c, then write the value of f(x)

If int(x^(2)-x+1)/((x^(2)+1)^((3)/(2)))e^(x)dx=e^(x)f(x)+c, then f(x) is an even function f(x) is a bounded function the range of f(x) is (0,1)f(x) has two points of extrema