Home
Class 12
MATHS
int sqrt (1 + x ^(2)). x dx = (1)/(3) (1...

`int sqrt (1 + x ^(2)). x dx = (1)/(3) (1 + x ^(2)) ^((3)/(2)) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + x^2} \cdot x \, dx \) and verify the given statement, we will follow these steps: ### Step 1: Set up the integral Let \[ I = \int \sqrt{1 + x^2} \cdot x \, dx \] ### Step 2: Use substitution We will use the substitution \( t^2 = 1 + x^2 \). Therefore, we differentiate both sides: \[ 2t \, dt = 2x \, dx \implies x \, dx = t \, dt \] ### Step 3: Express \( \sqrt{1 + x^2} \) in terms of \( t \) From our substitution, we have: \[ \sqrt{1 + x^2} = t \] ### Step 4: Substitute into the integral Now we can rewrite the integral \( I \): \[ I = \int t \cdot (t \, dt) = \int t^2 \, dt \] ### Step 5: Integrate The integral of \( t^2 \) is: \[ \int t^2 \, dt = \frac{t^3}{3} + C \] ### Step 6: Substitute back for \( t \) Now we substitute back \( t = \sqrt{1 + x^2} \): \[ I = \frac{(\sqrt{1 + x^2})^3}{3} + C = \frac{(1 + x^2)^{3/2}}{3} + C \] ### Conclusion Thus, we have shown that: \[ \int \sqrt{1 + x^2} \cdot x \, dx = \frac{1}{3} (1 + x^2)^{3/2} + C \] This confirms that the given statement is true. ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (3 MARKS EACH)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (FILL IN THE BLANK)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int (x+1)sqrt(1-x-x^(2))dx =-(1)/(3)(1-x-x^(2))^(3/2)+A+c .Then the value of A is

int(x+1)sqrt(1-x-x^(2))dx=-(1)/(3)(1-x-x^(2))^(3/2)+A+c .Then the value of A is

int(x+sqrt(1+x^(2)))^(1/3)dx

int sqrt(2x+(1)/(3))dx

int(1)/(sqrt(1-(3x+2)^(2)))dx

Choose the correct answer int sqrt(1+x^(2))dx is equal to (A)(x)/(2)sqrt(1+x^(2))+(1)/(2)log|(x+sqrt(x+x^(2)))|+C (B) (2)/(3)(1+x^(2))^((3)/(2))+C(C)(2)/(3)x(1+x^(2))^((3)/(2))+C(D)^(2)sqrt(1+x^(2))+(1)/(2)x^(2)log|x+sqrt(1+x^(2))|+C

int(1)/(sqrt(2x^(2)+2x+3))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

int(1)/(sqrt(x^(2)|3x|d1))dx

int(1)/(sqrt(3x-2))dx