Home
Class 12
MATHS
int (0) ^(3) e ^(x) dx =...

`int _(0) ^(3) e ^(x) dx = `

A

`e ^(3) -1 `

B

`1- e ^(3)`

C

`e -1`

D

`1-e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{3} e^{x} \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{3} e^{x} \, dx \] ### Step 2: Find the antiderivative of \( e^{x} \) The antiderivative of \( e^{x} \) is: \[ \int e^{x} \, dx = e^{x} + C \] where \( C \) is the constant of integration. ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from 0 to 3: \[ I = \left[ e^{x} \right]_{0}^{3} = e^{3} - e^{0} \] ### Step 4: Simplify the expression We know that \( e^{0} = 1 \), so: \[ I = e^{3} - 1 \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{3} e^{x} \, dx = e^{3} - 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (FILL IN THE BLANK)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (TRUE OR FALSE)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int _(0) ^(2) x e^(2) dx=

int _(0) ^(1) e ^(2x ) dx = ................

int_(0)^(2) e^(x) dx

int_(0)^(1)x e^(x)dx=

int_(0)^(2)e^(x)\ dx

int_(0)^(10)e^(2x)dx

int_(0)^(4)(x+e^(3x))dx

int_(0)^(2)e^(-x)dx

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int_(0)^(oo)e^(-x/2)dx