Home
Class 12
MATHS
int (-2) ^(3) (1)/(x +5) dx =...

`int _(-2) ^(3) (1)/(x +5) dx =`

A

`log ((3)/( 8)) `

B

`log ((8)/(3))`

C

`log ((8)/(5))`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{-2}^{3} \frac{1}{x + 5} \, dx\), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{-2}^{3} \frac{1}{x + 5} \, dx \] ### Step 2: Use substitution Let \(t = x + 5\). Then, we differentiate: \[ \frac{dt}{dx} = 1 \implies dx = dt \] ### Step 3: Change the limits of integration Now we need to change the limits of integration according to our substitution: - When \(x = -2\), \(t = -2 + 5 = 3\) - When \(x = 3\), \(t = 3 + 5 = 8\) So, the integral becomes: \[ I = \int_{3}^{8} \frac{1}{t} \, dt \] ### Step 4: Integrate The integral of \(\frac{1}{t}\) is \(\log |t|\). Therefore, we have: \[ I = \left[ \log |t| \right]_{3}^{8} \] ### Step 5: Evaluate the definite integral Now we evaluate this from 3 to 8: \[ I = \log |8| - \log |3| = \log 8 - \log 3 \] ### Step 6: Simplify using logarithmic properties Using the property of logarithms that states \(\log a - \log b = \log \frac{a}{b}\): \[ I = \log \frac{8}{3} \] ### Final Answer Thus, the value of the integral is: \[ \int_{-2}^{3} \frac{1}{x + 5} \, dx = \log \frac{8}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (FILL IN THE BLANK)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (TRUE OR FALSE)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(3)(1)/(x^(2)+5x+6)dx =

int_ (1) ^ (3) (2x ^ (2) +5) dx

int _ (- 1) ^ (1) (2x + 3) / (5x + 2) dx

int_(2)^(5)(1)/((2+3x))dx is -

int_(1)^(2) (dx)/(2x+5)=

int_(1)^(3)(2x+5)dx

int_(1)^(3)5x^(2)dx