Home
Class 12
MATHS
int (2) ^(3) (x)/( x ^(2) -1) dx =...

`int _(2) ^(3) (x)/( x ^(2) -1) dx =`

A

`log ((8)/(3))`

B

`- log ((8)/(3))`

C

`1/2 log ((8)/(3))`

D

`-1/2 log ((8)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{2}^{3} \frac{x}{x^2 - 1} \, dx \), we can follow these steps: ### Step 1: Set up the integral Let \[ I = \int_{2}^{3} \frac{x}{x^2 - 1} \, dx \] ### Step 2: Substitute \( t = x^2 - 1 \) We can use the substitution \( t = x^2 - 1 \). Then, differentiate both sides: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] ### Step 3: Change the limits of integration Now, we need to change the limits of integration according to our substitution: - When \( x = 2 \): \[ t = 2^2 - 1 = 4 - 1 = 3 \] - When \( x = 3 \): \[ t = 3^2 - 1 = 9 - 1 = 8 \] ### Step 4: Rewrite the integral in terms of \( t \) Substituting \( t \) and \( dx \) into the integral, we have: \[ I = \int_{3}^{8} \frac{x}{t} \cdot \frac{dt}{2x} = \int_{3}^{8} \frac{1}{2} \cdot \frac{dt}{t} \] This simplifies to: \[ I = \frac{1}{2} \int_{3}^{8} \frac{dt}{t} \] ### Step 5: Evaluate the integral The integral \( \int \frac{dt}{t} \) is \( \log |t| \). Therefore, \[ I = \frac{1}{2} \left[ \log |t| \right]_{3}^{8} = \frac{1}{2} \left( \log 8 - \log 3 \right) \] ### Step 6: Simplify using logarithmic properties Using the property of logarithms \( \log a - \log b = \log \frac{a}{b} \), we get: \[ I = \frac{1}{2} \log \frac{8}{3} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{2} \log \frac{8}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (FILL IN THE BLANK)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (TRUE OR FALSE)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int_ (2) ^ (3) (2x) / (x ^ (2) +1) dx

The value of int_(2)^(3)(x+1)/(x^(2)(x-1))dx is

int_(1)^(2)(3x)/(9x^(2)-1)dx

int(3x)/(2x^(2)+1)dx

int(3)/(2x^(2)-x-1)dx=

Evaluate the definite integrals int_(0)^(1)(2x+3)/(5x^(2)+1)dx

int(x^(2) +3)/(x^(2)+1)dx

int_ (0) ^ (1) (2x + 3) / (5x ^ (2) +1) dx

int(2x^(3))/((x^(2)+1)^(2))dx

int (2x + 3) / (2x-1) dx