Home
Class 12
MATHS
int (2) ^(7) (sqrtx)/( sqrtx + sqrt ( 9-...

`int _(2) ^(7) (sqrtx)/( sqrtx + sqrt ( 9-x)) dx =`

A

`7/2`

B

`5/2`

C

`7`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{2}^{7} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} \, dx, \] we can use a property of definite integrals. The property states that for a function \( f(x) \), \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx. \] In our case, \( a = 2 \) and \( b = 7 \), so \( a + b = 9 \). Therefore, we can rewrite the integral as: \[ I = \int_{2}^{7} \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}} \, dx. \] Now, let's denote this new integral as \( J \): \[ J = \int_{2}^{7} \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}} \, dx. \] Now we can add the two integrals \( I \) and \( J \): \[ I + J = \int_{2}^{7} \left( \frac{\sqrt{x}}{\sqrt{x} + \sqrt{9 - x}} + \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x}} \right) \, dx. \] Notice that the denominators are the same, so we can combine the fractions: \[ I + J = \int_{2}^{7} \frac{\sqrt{x} + \sqrt{9 - x}}{\sqrt{x} + \sqrt{9 - x}} \, dx = \int_{2}^{7} 1 \, dx. \] The integral of 1 from 2 to 7 is simply: \[ \int_{2}^{7} 1 \, dx = 7 - 2 = 5. \] Thus, we have: \[ I + J = 5. \] Since \( I \) and \( J \) are equal (as shown by the symmetry of the integrals), we can set \( I = J \). Therefore, we have: \[ 2I = 5 \implies I = \frac{5}{2}. \] So the value of the integral is: \[ \boxed{\frac{5}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (FILL IN THE BLANK)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (TRUE OR FALSE)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

By completing the following activity, Evaluate int _(2) ^(5) (sqrtx)/( sqrtx + sqrt ( 7 -x))dx

Evaluate int _(1) ^(2) (sqrtx)/( sqrt3 -x + sqrtx)dx

Evaluate the following : int_(0)^(9)(sqrtx)/(sqrtx+sqrt(9-x))dx

int _(4) ^(9) (dx)/(sqrtx) =

Evaluate the following : int_(0)^(a)(sqrtx)/(sqrtx+sqrt(a-x))dx

Evaluate : int_(0)^(9) (sqrtx)/(sqrtx+sqrt(9-x)) dx

int (2)/(sqrtx-sqrt(x+3)) dx =….

The value of int_(2)^(3) (sqrtx)/(sqrt(5-x)+sqrtx)dx is equal

int(3x sqrtx +4 sqrtx+5) dx=

Evaluate int _(0) ^(1) (1)/( (sqrt(1 + x) + sqrtx ) dx