Home
Class 12
MATHS
int (-9) ^(9) (x ^(3))/( 4- x ^(2)) dx =...

`int _(-9) ^(9) (x ^(3))/( 4- x ^(2)) dx =`

A

0

B

3

C

9

D

`-9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-9}^{9} \frac{x^3}{4 - x^2} \, dx, \] we can use the property of definite integrals concerning odd and even functions. ### Step 1: Identify the function Let \[ f(x) = \frac{x^3}{4 - x^2}. \] ### Step 2: Check if the function is odd or even To determine if \( f(x) \) is odd or even, we need to evaluate \( f(-x) \): \[ f(-x) = \frac{(-x)^3}{4 - (-x)^2} = \frac{-x^3}{4 - x^2}. \] ### Step 3: Compare \( f(-x) \) with \( -f(x) \) Now, we can see that: \[ -f(x) = -\left(\frac{x^3}{4 - x^2}\right) = \frac{-x^3}{4 - x^2}. \] Thus, we have: \[ f(-x) = -f(x). \] This means that \( f(x) \) is an odd function. ### Step 4: Use the property of odd functions in integrals Since \( f(x) \) is an odd function, we can apply the property of integrals: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(x) \text{ is odd}. \] ### Step 5: Conclude the value of the integral Therefore, we conclude that: \[ I = \int_{-9}^{9} \frac{x^3}{4 - x^2} \, dx = 0. \] ### Final Answer: \[ \int_{-9}^{9} \frac{x^3}{4 - x^2} \, dx = 0. \] ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (FILL IN THE BLANK)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (TRUE OR FALSE)|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 INTEGRATION (4 MARKS EACH)|10 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =

Evaluate int_(-3)^(3)(x^(3))/(9-x^(2))dx

int(x^(2))/(4x^(2)-9)dx

int(x^(2))/(9+4x^(2))dx

int(1)/(4x^(2) +9) dx

" (8) "int(x^(3))/(3x^(4)+9)*dx

int(x)/(9-4x^(2))dx

int(x)/(9-4x^(2))dx

int(1)/(9-4x^(2))dx

int_(-3)^(3)(x+9)dx