Home
Class 12
MATHS
int (0) ^(2a) f (x) dx = int (0) ^(a) f ...

`int _(0) ^(2a) f (x) dx = int _(0) ^(a) f (x) dx + int _(0)^(a) f (2a -x ) dx `

Text Solution

Verified by Experts

The correct Answer is:
F
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (3 MARKS)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (4 MARKS)|7 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (FILL IN THE BLANK)|6 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

If it is known that int _(0) ^(10) f (x ) dx =17 and int _(0) ^(8) f (x ) dx =12, find int _(8)^(10) f (x) dx , given f(x) is continuous.

Let int_(0)^(a) f(x)dx=lambda and int_(0)^(a) f(2a-x)dx=mu . Then, int_(0)^(2a) f(x) dx equal to

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=

int_(0)^(a)[f(x)+f(a-x)]dx=