Home
Class 12
MATHS
int (-5) ^(5) (x )/(x ^(2) + 7) dx = 10....

`int _(-5) ^(5) (x )/(x ^(2) + 7) dx = 10`. True or False.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the integral \[ \int_{-5}^{5} \frac{x}{x^2 + 7} \, dx = 10 \] is true or false, we can analyze the integral step by step. ### Step 1: Identify the Function The integrand is \[ f(x) = \frac{x}{x^2 + 7}. \] ### Step 2: Check for Odd Function To check if \( f(x) \) is an odd function, we need to evaluate \( f(-x) \): \[ f(-x) = \frac{-x}{(-x)^2 + 7} = \frac{-x}{x^2 + 7} = -f(x). \] Since \( f(-x) = -f(x) \), this confirms that \( f(x) \) is indeed an odd function. ### Step 3: Use the Property of Odd Functions The property of odd functions states that the integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0. \] In our case, since we are integrating from \(-5\) to \(5\), we can conclude: \[ \int_{-5}^{5} \frac{x}{x^2 + 7} \, dx = 0. \] ### Step 4: Compare with Given Value The question states that the integral equals \(10\): \[ \int_{-5}^{5} \frac{x}{x^2 + 7} \, dx = 10. \] Since we found that the integral actually equals \(0\), we conclude that the statement is false. ### Final Answer Thus, the statement is **False**. ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (3 MARKS)|10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (4 MARKS)|7 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 DEFINITE INTEGRATION (FILL IN THE BLANK)|6 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

int _(2) ^(3)(x)/( x ^(2) +1) dx = 1/2 log 2 . True or False.

int _(0) ^(a) 3x ^(2) dx = 27 then a = 2.5 . True or False.

int(3 -7x)^(5) dx

int_(-5)^(5)|x+2|dx

int x(3x+7)^(5)dx

int x(3x+7)^(5)dx

int(3-5x)^(7)dx=?

" (1) "int(1)/(5x^(2)+7)dx

int_(5)^(10)(dx)/((x-1)(x-2))=

int(7x-2)^(-5)dx