Home
Class 12
MATHS
If n = 6, sumx = 36, sumy = 60,sumxy = -...

If n = 6, `sumx = 36, sumy = 60,sumxy = -67 , sumx^2 =50 , sumy^2` =106, Estimate y when x is 13.

Text Solution

AI Generated Solution

The correct Answer is:
To estimate \( y \) when \( x = 13 \), we will follow these steps: ### Step 1: Calculate the regression coefficient \( b_{yx} \) The formula for the regression coefficient \( b_{yx} \) is given by: \[ b_{yx} = \frac{n \cdot \sum{xy} - \sum{x} \cdot \sum{y}}{n \cdot \sum{x^2} - (\sum{x})^2} \] Substituting the given values: - \( n = 6 \) - \( \sum{xy} = -67 \) - \( \sum{x} = 36 \) - \( \sum{y} = 60 \) - \( \sum{x^2} = 50 \) Calculating the numerator: \[ n \cdot \sum{xy} - \sum{x} \cdot \sum{y} = 6 \cdot (-67) - 36 \cdot 60 = -402 - 2160 = -2562 \] Calculating the denominator: \[ n \cdot \sum{x^2} - (\sum{x})^2 = 6 \cdot 50 - 36^2 = 300 - 1296 = -996 \] Now, substituting these values into the formula: \[ b_{yx} = \frac{-2562}{-996} = \frac{2562}{996} \] ### Step 2: Simplify \( b_{yx} \) To simplify \( \frac{2562}{996} \): - Dividing both the numerator and denominator by 3: \[ \frac{854}{332} \] - Dividing again by 2: \[ \frac{427}{166} \] Thus, \( b_{yx} = \frac{427}{166} \). ### Step 3: Calculate \( \bar{x} \) and \( \bar{y} \) Calculate the means: \[ \bar{x} = \frac{\sum{x}}{n} = \frac{36}{6} = 6 \] \[ \bar{y} = \frac{\sum{y}}{n} = \frac{60}{6} = 10 \] ### Step 4: Write the regression equation The regression equation of \( y \) on \( x \) is given by: \[ y - \bar{y} = b_{yx}(x - \bar{x}) \] Substituting the values: \[ y - 10 = \frac{427}{166}(x - 6) \] ### Step 5: Estimate \( y \) when \( x = 13 \) Substituting \( x = 13 \) into the regression equation: \[ y - 10 = \frac{427}{166}(13 - 6) \] \[ y - 10 = \frac{427}{166} \cdot 7 \] \[ y - 10 = \frac{2989}{166} \] \[ y = 10 + \frac{2989}{166} \] Calculating \( y \): \[ y = 10 + 18.00 \approx 28.006 \] Thus, the estimated value of \( y \) when \( x = 13 \) is approximately \( 28.006 \).
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II 3. LINEAR REGRESSION (V. Activity questions:)|8 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II 4. TIME SERIES (I) Choose the correct alternative.)|5 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise Part II 3. LINEAR REGRESSION (III. Fill in the following blanks:)|11 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If n = 5,sumx = sumy = 20, sumx^2 = sumy^2 = 90 , sumxy = 76 Find Covariance (x,y)

If n = 5,sumx = sumy = 20, sumx^2 = sumy^2 = 90 , sumxy = 76 Find the regression equation of x on y.

For observations of pairs (x,y) of the variables x and y, the following results are obtained sumx=100, sumy=70, sumx^(2)=2500, sumy^(2)=2000, sumxy=100 and n =20 . Find the equation of the line of regresion of X and Y. Estimate the value of x if y=4.

Find the regression coefficients b_(yx) and b_(xy) between x and y for the data n =8, sum x=36, sumy=48, sumxy=225, sumx^(2)=146, sumy^(2)=324 .

In a blvariate data sum x=30, sumy=400, sumx^(2)=196, sumxy=850 and n=10 . Find the regression coefficient of y on x.

Covariance (x,y) between x and if sumx=15, sum y=40, sumxy=110, n=5 is

2x^(2) - 13x+20 = 0, 2y^(2) - 7y + 6 = 0

2x^(2) - 13x + 20 = 0, 2y^(2) - 7y + 6 = 0